Stability of milling with non-uniform pitch and variable helix Tools

[1]  Ahmad Razlan Yusoff,et al.  Identifying Bifurcation Behavior during Machining Process for an Irregular Milling Tool Geometry , 2016 .

[2]  Eckehard Schöll,et al.  Suppression of Noise-Induced Modulations in Multidelay Systems. , 2016, Physical review letters.

[3]  Min Wan,et al.  Study of static and dynamic ploughing mechanisms by establishing generalized model with static milling forces , 2016 .

[4]  Bo Zhao,et al.  Chatter modeling and stability lobes predicting for non-uniform helix tools , 2016 .

[5]  Neil D. Sims,et al.  Fast chatter stability prediction for variable helix milling tools , 2016 .

[6]  Günter Radons,et al.  The influence of tangential and torsional vibrations on the stability lobes in metal cutting , 2015 .

[7]  Firas A. Khasawneh,et al.  Position-dependent stability analysis of turning with tool and workpiece compliance , 2015 .

[8]  Min Wan,et al.  Study on the construction mechanism of stability lobes in milling process with multiple modes , 2015 .

[9]  Martin Kolouch,et al.  Extension of Tlusty׳s law for the identification of chatter stability lobes in multi-dimensional cutting processes , 2014 .

[10]  Giovanni Samaey,et al.  DDE-BIFTOOL Manual - Bifurcation analysis of delay differential equations , 2014, 1406.7144.

[11]  Thomas Jüngling,et al.  Experimental time-delayed feedback control with variable and distributed delays. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Zoltan Dombovari,et al.  The Effect of Helix Angle Variation on Milling Stability , 2012 .

[13]  Francisco J. Campa,et al.  Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method , 2012 .

[14]  Bernhard P. Lampe,et al.  Hill method for linear periodic systems with delay , 2011, 2011 16th International Conference on Methods & Models in Automation & Robotics.

[15]  Min Wan,et al.  Prediction of chatter stability for multiple-delay milling system under different cutting force models , 2011 .

[16]  Neil D. Sims,et al.  Optimisation of variable helix tool geometry for regenerative chatter mitigation , 2011 .

[17]  Berend Denkena,et al.  Stable islands in the stability chart of milling processes due to unequal tooth pitch , 2011 .

[18]  Tamás Insperger,et al.  Analysis of directional factors in milling: importance of multi-frequency calculation and of the inclusion of the effect of the helix angle , 2010 .

[19]  Neil D. Sims,et al.  Analytical prediction of chatter stability for variable pitch and variable helix milling tools , 2008 .

[20]  Gábor Stépán,et al.  On the chatter frequencies of milling processes with runout , 2008 .

[21]  Nejat Olgac,et al.  Dynamics and Stability of Variable-pitch Milling , 2007 .

[22]  Keith Ridgway,et al.  Modelling of the stability of variable helix end mills , 2007 .

[23]  Oliver Rott,et al.  A comparison of analytical cutting force models , 2006 .

[24]  Jose Antonio Sanchez,et al.  Simultaneous measurement of forces and machine tool position for diagnostic of machining tests , 2005, IEEE Transactions on Instrumentation and Measurement.

[25]  Erhan Budak,et al.  An analytical design method for milling cutters with nonconstant pitch to increase stability, Part I: Theory , 2003 .

[26]  Gábor Stépán,et al.  Stability chart for the delayed Mathieu equation , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[27]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[28]  Wolfram Just,et al.  On the eigenvalue spectrum for time-delayed Floquet problems , 2000 .

[29]  Yusuf Altintas,et al.  Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design , 2000 .

[30]  Yusuf Altintas,et al.  Analytical Stability Prediction and Design of Variable Pitch Cutters , 1998, Manufacturing Science and Engineering.

[31]  Norman M. Wereley,et al.  Generalized Nyquist Stability Criterion for Linear Time Periodic Systems , 1990, 1990 American Control Conference.

[32]  G. Hill On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon , 1886 .

[33]  Gábor Stépán,et al.  Regenerative delay, parametric forcing and machine tool chatter: A review , 2015 .

[34]  Jokin Munoa,et al.  Cylindrical milling tools: Comparative real case study for process stability , 2014 .

[35]  Gábor Stépán,et al.  Improved prediction of stability lobes with extended multi frequency solution , 2013 .

[36]  Tony L. Schmitz,et al.  Analytical process damping stability prediction , 2013 .

[37]  Günter Radons,et al.  Application of spindle speed variation for chatter suppression in turning , 2013 .

[38]  Andreas Otto,et al.  Frequency domain stability analysis of milling processes with variable helix tools , 2012 .

[39]  Firas A. Khasawneh,et al.  Periodic solutions of nonlinear delay differential equations using spectral element method , 2012 .

[40]  Berend Denkena,et al.  High speed process damping in milling , 2012 .

[41]  Jokin Munoa,et al.  Identification of cutting force characteristics based on chatter experiments , 2011 .

[42]  Min Wan,et al.  A unified stability prediction method for milling process with multiple delays , 2010 .

[43]  T. Insperger,et al.  Analysis of the Influence of Mill Helix Angle on Chatter Stability , 2006 .

[44]  Manfred Weck,et al.  Chatter Stability of Metal Cutting and Grinding , 2004 .

[45]  Miklós Farkas,et al.  Periodic Motions , 1994 .

[46]  O. Daněk,et al.  Selbsterregte Schwingungen : An Werkzeugmaschinen , 1962 .

[47]  Stephen Albert Tobias Schwingungen an Werkzeugmaschinen , 1961 .