Temporally Consistent Disparity and Optical Flow via Efficient Spatio-temporal Filtering

This paper presents a new efficient algorithm for computing temporally consistent disparity maps from video footage. Our method is motivated by recent work [1] that achieves high quality stereo results by smoothing disparity costs with a fast edge-preserving filter. This previous approach was designed to work with single static image pairs and does not maintain temporal coherency of disparity maps when applied to video streams. The main contribution of our work is to transfer this concept to the spatio-temporal domain in order to efficiently achieve temporally consistent disparity maps, where disparity changes are aligned with spatio-temporal edges of the video sequence. We further show that our method can be used as spatio-temporal regularizer for optical flow estimation. Our approach can be implemented efficiently, achieving real-time results for stereo matching. Quantitative and qualitative results demonstrate that our approach (i) considerably improves over frame-by-frame methods for both stereo and optical flow; and (ii) outperforms the state-of-the-art for local space-time stereo approaches.

[1]  O. Faugeras,et al.  Computer Vision — ECCV 90 , 1990, Lecture Notes in Computer Science.

[2]  Joachim Weickert,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Optic Flow in Harmony Optic Flow in Harmony Optic Flow in Harmony , 2022 .

[3]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[4]  Neil A. Dodgson,et al.  Real-Time Spatiotemporal Stereo Matching Using the Dual-Cross-Bilateral Grid , 2010, ECCV.

[5]  Michael Isard,et al.  Estimating disparity and occlusions in stereo video sequences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[6]  Steven M. Seitz,et al.  Spacetime faces , 2004, ACM Trans. Graph..

[7]  Daniel Cremers,et al.  Large displacement optical flow computation withoutwarping , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[8]  Jiří Matas,et al.  Computer Vision - ECCV 2004 , 2004, Lecture Notes in Computer Science.

[9]  Changming Sun,et al.  An energy minimisation approach to stereo-temporal dense reconstruction , 2004, ICPR 2004.

[10]  R. M. Díaz,et al.  On first-passage problems for asymmetric one-dimensional diffusions , 2007 .

[11]  Michael J. Black,et al.  Secrets of optical flow estimation and their principles , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Carsten Rother,et al.  Fast cost-volume filtering for visual correspondence and beyond , 2011, CVPR 2011.

[13]  Marc Pollefeys,et al.  Temporally Consistent Reconstruction from Multiple Video Streams Using Enhanced Belief Propagation , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[14]  Horst Bischof,et al.  Motion estimation with non-local total variation regularization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Takeo Kanade,et al.  Three-dimensional scene flow , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Hans-Hellmut Nagel,et al.  Extending the 'Oriented Smoothness Constraint' into the Temporal Domain and the Estimation of Derivatives of Optical Flow , 1990, ECCV.

[17]  Szymon Rusinkiewicz,et al.  Spacetime Stereo: A Unifying Framework for Depth from Triangulation , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Michael J. Black,et al.  Robust dynamic motion estimation over time , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Thomas Deselaers,et al.  ClassCut for Unsupervised Class Segmentation , 2010, ECCV.

[20]  Margrit Gelautz,et al.  Local stereo matching using geodesic support weights , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[21]  M. Gelautz,et al.  Temporally consistent disparity maps from uncalibrated stereo videos , 2009, 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis.

[22]  John K. Tsotsos,et al.  Applying temporal constraints to the dynamic stereo problem , 1986, Comput. Vis. Graph. Image Process..

[23]  M. Bleyer,et al.  Near Real-Time Stereo With Adaptive Support Weight Approaches , 2010 .

[24]  Richard Szeliski,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, International Journal of Computer Vision.

[25]  Li Zhang,et al.  Spacetime stereo: shape recovery for dynamic scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[26]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[27]  Agustín Salgado de la Nuez,et al.  Temporal Constraints in Large Optical Flow Estimation , 2007, EUROCAST.

[28]  Kuk-Jin Yoon,et al.  Locally adaptive support-weight approach for visual correspondence search , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[29]  Jian Sun,et al.  Guided Image Filtering , 2010, ECCV.

[30]  Richard P. Wildes,et al.  Spatiotemporal stereo via spatiotemporal quadric element (stequel) matching , 2009, CVPR.