Lithium Niobate on Silicon Dioxide Suspended Membranes: A Technology Platform for Engineering the Temperature Coefficient of Frequency of High Electromechanical Coupling Resonators

This paper presents a new class of laterally vibrating resonators (LVRs) based on Y-cut ion-sliced lithium niobate (LN) thin films on silicon dioxide (SiO2). The SiO2 layer is used to engineer the temperature coefficient of frequency (TCF) of the LN resonator. The LN LVR is built on top of a SiO2 layer and released from the underlying silicon wafer by dry etching in Xenon difluoride (XeF2). For a given sample having an LN layer thickness of 420 nm and SiO2 thickness of 1600 nm, this paper demonstrated resonators with TCF of +17 ppm/°C, and +18 ppm/°C for devices vibrating at 460 and 420 MHz, and, respectively, oriented at 10° and 30° to the x-axis. TCF of +24.1 ppm/°C and +27.7 ppm/°C were recorded for devices vibrating at 720 MHz, respectively, oriented at 40° and 50° to the x-axis. These results correspond to a 4-5 X reduction in the TCF of standalone LN resonators. The positive TCF clearly indicates the effect of the SiO2 layer, and its value matches with what is predicted analytically by finite element method simulations and nonlinear analysis of the resonator amplitude-frequency response. This demonstration offers evidence that TCF engineering of LN LVRs is possible. Most importantly, these LN LVRs still exhibited high values of electromechanical coupling, k2t , around 9% at 723.7 MHz, and Q in excess of 1320 in air at 419.3 MHz. By optimizing the relative values of the LN and SiO2 thickness, it is ultimately possible to attain devices with zero first order TCF.

[1]  R. A. Betts,et al.  Growth of thin-film lithium niobate by molecular beam epitaxy , 1985 .

[2]  Tomoaki Yamada,et al.  Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals , 1967 .

[3]  T. Yamane,et al.  Measurement of thermal conductivity of silicon dioxide thin films using a 3ω method , 2002 .

[4]  K. Jain,et al.  R.F. Sputtering of LiNbO3 thin films , 1982 .

[5]  C. D. White,et al.  Piezoelectric aluminum nitride MEMS annular dual contour mode filter , 2007 .

[6]  G. Wingqvist,et al.  A micromachined thermally compensated thin film Lamb wave resonator for frequency control and sensing applications , 2009 .

[7]  H. Ogi,et al.  Acoustic spectroscopy of lithium niobate: Elastic and piezoelectric coefficients , 2002 .

[8]  Wei Pang,et al.  Ultra Temperature-Stable Bulk-Acoustic-Wave Resonators with SiO 2 Compensation Layer , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[9]  Gianluca Piazza,et al.  High electromechanical coupling MEMS resonators at 530 MHz using ion sliced X-cut LiNbO3 thin film , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[10]  J.J. Campbell,et al.  A method for estimating optimal crystal cuts and propagation directions for excitation of piezoelectric surface waves , 1968, IEEE Transactions on Sonics and Ultrasonics.

[11]  Ventsislav Yantchev,et al.  Temperature compensation of liquid FBAR sensors , 2007 .

[12]  F. Sarry,et al.  4E-2 Theoretical and Experimental Study of the Differential Thermal Expansion Effect on the TCD of Layered SAW Temperature Sensors Application to Aluminum Nitride Based Layered Structures , 2007, 2007 IEEE Ultrasonics Symposium Proceedings.

[13]  A. Pisano,et al.  Piezoelectric Aluminum Nitride Vibrating Contour-Mode MEMS Resonators , 2006, Journal of Microelectromechanical Systems.

[14]  Gianluca Piazza,et al.  Thermal Nonlinearities in Contour Mode AlN Resonators , 2013, Journal of Microelectromechanical Systems.

[15]  Wei Pang,et al.  A Temperature-Stable Film Bulk Acoustic Wave Oscillator , 2008, IEEE Electron Device Letters.

[16]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[17]  A. Tazzoli,et al.  High power and low temperature coefficient of frequency oscillator based on a fully anchored and oxide compensated ALN contour-mode MEMS resonator , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[18]  T. Gaylord,et al.  Lithium niobate: Summary of physical properties and crystal structure , 1985 .

[19]  Inspec,et al.  Properties of lithium niobate , 1989 .

[20]  Songbin Gong,et al.  Design and Analysis of Lithium–Niobate-Based High Electromechanical Coupling RF-MEMS Resonators for Wideband Filtering , 2013, IEEE Transactions on Microwave Theory and Techniques.

[21]  T. S. Gilbert,et al.  Sputter deposited c‐oriented LiNbO3 thin films on SiO2 , 1996 .

[22]  M. Kadota,et al.  High-Frequency Lamb Wave Device Composed of LiNbO3 Thin Film , 2008, 2008 IEEE Ultrasonics Symposium.

[23]  A. Pisano,et al.  Intrinsic temperature compensation of aluminum nitride Lamb wave resonators for multiple-frequency references , 2008, 2008 IEEE International Frequency Control Symposium.

[24]  A. Tazzoli,et al.  Experimental Investigation of Thermally Induced Nonlinearities in Aluminum Nitride Contour-Mode MEMS Resonators , 2012, IEEE Electron Device Letters.

[25]  K. Bhattacharjee,et al.  High kt2×Q, multi-frequency lithium niobate resonators , 2013, 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS).

[26]  Gianluca Piazza,et al.  Multifrequency Pierce Oscillators Based on Piezoelectric AlN Contour-Mode MEMS Technology , 2010, Journal of Microelectromechanical Systems.

[27]  Clemens Ruppel,et al.  Improved material constants for LiNbO/sub 3/ and LiTaO/sub 3/ , 1990, IEEE Symposium on Ultrasonics.

[28]  S. Kawai,et al.  Epitaxial growth and surface acoustic wave properties of lithium niobate films grown by pulsed laser deposition , 1995 .

[29]  F. S. Welsh,et al.  Temperature Dependence of the Elastic, Piezoelectric, and Dielectric Constants of Lithium Tantalate and Lithium Niobate , 1971 .

[30]  S. Oktyabrsky,et al.  An examination of the surface decomposition chemistry of lithium niobate precursors under high vacuum conditions , 2000 .

[31]  R. J. Jenkins,et al.  Flash Method of Determining Thermal Diffusivity, Heat Capacity, and Thermal Conductivity , 1961 .

[32]  Thomas W. Kenny,et al.  Temperature-compensated high-stability silicon resonators , 2007 .

[33]  A. Pisano,et al.  Temperature-compensated aluminum nitride lamb wave resonators , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[34]  M. Shimada,et al.  Correlation between interfacial structure and c-axis-orientation of LiNbO3 films grown on Si and SiO2 by electron cyclotron resonance plasma sputtering , 2004 .

[35]  A. Pisano,et al.  Thermal compensation for aluminum nitride Lamb wave resonators operating at high temperature , 2010, 2010 IEEE International Frequency Control Symposium.

[36]  K. Nakamura,et al.  Temperature characteristics of solidly mounted piezoelectric thin film resonators , 2003, IEEE Symposium on Ultrasonics, 2003.