Data Stream Management in the AAL: Universal and Flexible Preprocessing of Continuous Sensor Data

Continuous and potentially infinite sequences of data—so-called data streams—are processed in many applications of Ambient Assisted Living (AAL). The preprocessing of such high frequent data is normally done by fixed code or hard wired hardware. This leads on the one hand to an inflexible and extensive to change processing and on the other hand to very specialized solutions. Like databases data stream management systems (DSMS) offer a universal processing of data, but are designed for highly frequent and potentially infinite data streams. Thus, DSMS are an alternative approach for processing sensor data. Therefore, this paper shows how DSMS can be used in the AAL for an universal and flexible preprocessing of sensor data. For this, DSMS and its features are introduced and we show which advantages over existing solutions a DSMS can offer for future researches in AAL.

[1]  Mohammad-Reza Tazari,et al.  universAAL - eine offene und konsolidierte AAL-Plattform , 2011 .

[2]  Erina Ferro,et al.  The PERSONA Service Platform for AAL Spaces , 2010, Handbook of Ambient Intelligence and Smart Environments.

[3]  Lora Aroyo,et al.  The Semantic Web: Research and Applications , 2009, Lecture Notes in Computer Science.

[4]  Francesco Furfari,et al.  universAAL – An Open and Consolidated AAL Platform , 2011 .

[5]  Neil Immerman,et al.  On Supporting Kleene Closure over Event Streams , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[6]  Constantine Stephanidis,et al.  Universal Access in Human-Computer Interaction , 2011 .

[7]  Claas Busemann,et al.  SCAMPI - Sensor Configuration and Aggregation Middleware for Multi Platform Interchange , 2009, GI Jahrestagung.

[8]  Andre Bolles,et al.  Streaming SPARQL - Extending SPARQL to Process Data Streams , 2008, ESWC.

[9]  Claas Busemann,et al.  Flexible and Efficient Sensor Data Processing - A Hybrid Approach , 2011, BTW.

[10]  Evangelos Bekiaris,et al.  The OASIS Concept , 2009, HCI.

[11]  Lukasz Golab,et al.  Issues in data stream management , 2003, SGMD.

[12]  Shonali Krishnaswamy,et al.  Mining data streams: a review , 2005, SGMD.

[13]  Ying Xing,et al.  The Design of the Borealis Stream Processing Engine , 2005, CIDR.

[14]  Hans-Jürgen Appelrath,et al.  StreamCars - Datenstrommanagementbasierte Verarbeitung von Sensordaten im Fahrzeug , 2011, BTW.

[15]  Jennifer Widom,et al.  STREAM: the stanford stream data manager (demonstration description) , 2003, SIGMOD '03.

[16]  Frank Bomarius,et al.  An Event-Driven Approach to Activity Recognition in Ambient Assisted Living , 2009, AmI.

[17]  Gert Brettlecker,et al.  Efficient and Reliable Data Stream Management , 2008 .

[18]  Walid G. Aref,et al.  PLACE: A Query Processor for Handling Real-time Spatio-temporal Data Streams , 2004, VLDB.

[19]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[20]  Marco Eichelberg,et al.  The GAL middleware platform for AAL , 2010, The 12th IEEE International Conference on e-Health Networking, Applications and Services.

[21]  Marco Grawunder,et al.  ODYSSEUS: Ein flexibles Framework zum Erstellen anwendungsspezifischer Datenstrommanagementsysteme , 2008, Grundlagen von Datenbanken.

[22]  JÜRGEN KRÄMER,et al.  Semantics and implementation of continuous sliding window queries over data streams , 2009, TODS.

[23]  Ying Xing,et al.  Distributed operation in the Borealis stream processing engine , 2005, SIGMOD '05.

[24]  Lukasz Golab,et al.  Data Stream Management , 2017, Data Stream Management.

[25]  Jennifer Widom,et al.  STREAM: The Stanford Stream Data Manager , 2003, IEEE Data Eng. Bull..