A critical window for cooperation and competition among developing retinotectal synapses

In the developing frog visual system, topographic refinement of the retinotectal projection depends on electrical activity. In vivo whole-cell recording from developing Xenopus tectal neurons shows that convergent retinotectal synapses undergo activity-dependent cooperation and competition following correlated pre- and postsynaptic spiking within a narrow time window. Synaptic inputs activated repetitively within 20 ms before spiking of the tectal neuron become potentiated, whereas subthreshold inputs activated within 20 ms after spiking become depressed. Thus both the initial synaptic strength and the temporal order of activation are critical for heterosynaptic interactions among convergent synaptic inputs during activity-dependent refinement of developing neural networks.

[1]  D. Hubel,et al.  The period of susceptibility to the physiological effects of unilateral eye closure in kittens , 1970, The Journal of physiology.

[2]  G. Stent A physiological mechanism for Hebb's postulate of learning. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. Malsburg,et al.  How patterned neural connections can be set up by self-organization , 1976, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  C. cohen-tannoudji Effect of a Non-Resonant Irradiation on Atomic Energy Levels?Application to Light-Shifts in Two-Photon Spectroscopy and to Perturbation of Rydberg States , 1977 .

[5]  W. Harris,et al.  The effects of eliminating impulse activity on the development of the retinotectal projection in salamanders , 1980, The Journal of comparative neurology.

[6]  D. Hubel,et al.  The development of ocular dominance columns in normal and visually deprived monkeys , 1980, The Journal of comparative neurology.

[7]  B. Shore,et al.  Coherent atomic deflection by resonant standing waves , 1981 .

[8]  R. Murphey,et al.  Map formation in the developing Xenopus retinotectal system: an examination of ganglion cell terminal arborizations , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  M. Constantine-Paton,et al.  Eye-specific segregation requires neural activity in three-eyed Rana pipiens , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Rauch,et al.  Neutron interferometric double-resonance experiment. , 1986, Physical review. A, General physics.

[11]  M. Stryker,et al.  Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  E. Debski,et al.  N-methyl-D-aspartate receptor antagonist desegregates eye-specific stripes. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[13]  L. Cooper,et al.  A physiological basis for a theory of synapse modification. , 1987, Science.

[14]  W. Singer,et al.  Long-term potentiation and NMDA receptors in rat visual cortex , 1987, Nature.

[15]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[16]  M. Stryker,et al.  Prenatal tetrodotoxin infusion blocks segregation of retinogeniculate afferents. , 1988, Science.

[17]  S B Udin,et al.  Formation of topographic maps. , 1988, Annual review of neuroscience.

[18]  K Toyama,et al.  Long-term potentiation of synaptic transmission in kitten visual cortex. , 1988, Journal of neurophysiology.

[19]  A. Miklich,et al.  Bragg scattering of atoms from a standing light wave. , 1988, Physical review letters.

[20]  Hollis T. Cline,et al.  NMDA receptor antagonists disrupt the retinotectal topographic map , 1989, Neuron.

[21]  K. Miller,et al.  Ocular dominance column development: analysis and simulation. , 1989, Science.

[22]  E. W. Kairiss,et al.  Hebbian synapses: biophysical mechanisms and algorithms. , 1990, Annual review of neuroscience.

[23]  J. Schmidt,et al.  Long-term potentiation and activity-dependent retinotopic sharpening in the regenerating retinotectal projection of goldfish: common sensitive period and sensitivity to NMDA blockers , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[24]  Scott E. Fraser,et al.  Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: An in vivo confocal microscopic study , 1990, Neuron.

[25]  M. Constantine-Paton,et al.  Patterned activity, synaptic convergence, and the NMDA receptor in developing visual pathways. , 1990, Annual review of neuroscience.

[26]  M. Poo,et al.  Activity-dependent synaptic competition in vitro: heterosynaptic suppression of developing synapses. , 1991, Science.

[27]  Kim Cooper,et al.  Low access resistance perforated patch recordings using amphotericin B , 1991, Journal of Neuroscience Methods.

[28]  D. Baylor,et al.  Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. , 1991, Science.

[29]  M. Sur,et al.  Disruption of retinogeniculate afferent segregation by antagonists to NMDA receptors , 1991, Nature.

[30]  B. Englert,et al.  Quantum optical tests of complementarity , 1991, Nature.

[31]  W A Press,et al.  Long-term potentiation in slices of kitten visual cortex and the effects of NMDA receptor blockade. , 1992, Journal of neurophysiology.

[32]  A S Feng,et al.  Temporal coding in the frog auditory midbrain: the influence of duration and rise-fall time on the processing of complex amplitude-modulated stimuli. , 1992, Journal of neurophysiology.

[33]  J. Schmidt,et al.  Activity-driven sharpening of the retinotectal projection in goldfish: development under stroboscopic illumination prevents sharpening. , 1993, Journal of neurobiology.

[34]  C. Holt,et al.  Position, guidance, and mapping in the developing visual system. , 1993, Journal of neurobiology.

[35]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[36]  C. Shatz,et al.  Developmental mechanisms that generate precise patterns of neuronal connectivity , 1993, Cell.

[37]  M. Constantine‐Paton,et al.  The contributions of NMDA, non-NMDA, and GABA receptors to postsynaptic responses in neurons of the optic tectum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[38]  Richard Mooney,et al.  Enhancement of transmission at the developing retinogeniculate synapse , 1993, Neuron.

[39]  D. Walls,et al.  Path detection and the uncertainty principle , 1994, Nature.

[40]  David A. Smith,et al.  Temporal covariance of pre- and postsynaptic activity regulates functional connectivity in the visual cortex. , 1994, Journal of neurophysiology.

[41]  Robert C. Malenka,et al.  Synaptic plasticity in the hippocampus: LTP and LTD , 1994, Cell.

[42]  C. Shatz,et al.  Early functional neural networks in the developing retina , 1995, Nature.

[43]  H. Wiseman,et al.  Uncertainty over complementarity? , 1995, Nature.

[44]  B. Englert,et al.  Complementarity and uncertainty , 1995, Nature.

[45]  Robert S. Zucker,et al.  Postsynaptic Levels of [Ca2+]i Needed to Trigger LTD and LTP , 1996, Neuron.

[46]  C. Shatz,et al.  Synaptic Activity and the Construction of Cortical Circuits , 1996, Science.

[47]  R. Malinow,et al.  Maturation of a Central Glutamatergic Synapse , 1996, Science.

[48]  H. Markram,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997, Science.

[49]  D. Johnston,et al.  A Synaptically Controlled, Associative Signal for Hebbian Plasticity in Hippocampal Neurons , 1997, Science.

[50]  M. Weliky,et al.  Disruption of orientation tuning visual cortex by artificially correlated neuronal activity , 1997, Nature.

[51]  B. McNaughton,et al.  Experience-dependent, asymmetric expansion of hippocampal place fields. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[52]  J. Lichtman,et al.  Alterations in Synaptic Strength Preceding Axon Withdrawal , 1997, Science.

[53]  M. Keating,et al.  Synchronizing Retinal Activity in Both Eyes Disrupts Binocular Map Development in the Optic Tectum , 1998, The Journal of Neuroscience.

[54]  C. Shatz,et al.  Competition in retinogeniculate patterning driven by spontaneous activity. , 1998, Science.

[55]  D. Debanne,et al.  Long‐term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures , 1998, The Journal of physiology.