A relaxed logarithmic barrier method for semidefinite programming

Interior point methods applied to optimization problems have known a remarkable evolution in the last decades. They are used with success in linear, quadratic and semidefinite programming. Among these methods, primal-dual central trajectory methods have a polynomial convergence and are credited of a good numerical behavior. In this paper, we propose a new central trajectory method where a relaxation parameter is introduced in order to give more flexibility to the theoretical and numerical aspects of the perturbed problems and accelerate the convergence of the algorithm. This claim is confirmed by numerical tests showing the good behavior of the algorithm which is proposed in this paper.

[1]  Florian A. Potra,et al.  Nonsymmetric Search Directions for Semidefinite Programming , 1999, SIAM J. Optim..

[2]  Christian Kanzow,et al.  Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results , 2002, SIAM J. Optim..

[3]  Renato D. C. Monteiro,et al.  A note on the existence of the Alizadeh-Haeberly-Overton direction for semidefinite programming , 1997, Math. Program..

[4]  Chek Beng Chua A New Notion of Weighted Centers for Semidefinite Programming , 2006, SIAM J. Optim..

[5]  Jun Ji,et al.  On the Local Convergence of a Predictor-Corrector Method for Semidefinite Programming , 1999, SIAM J. Optim..

[6]  Takashi Tsuchiya,et al.  Polynomial Convergence of a New Family of Primal-Dual Algorithms for Semidefinite Programming , 1999, SIAM J. Optim..

[7]  Djamel Benterki,et al.  A numerical implementation of an interior point method for semidefinite programming , 2003 .

[8]  Masakazu Kojima,et al.  A Predictor-corrector Interior-point Algorithm for the Semidenite Linear Complementarity Problem Using the Alizadeh-haeberly-overton Search Direction , 1996 .

[9]  Etienne de Klerk,et al.  On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..

[10]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[11]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[12]  Robert M. Freund,et al.  Opera Tions Research Center Working Paper Condition-measure Bounds on the Behavior of the Central Trajectory of a Semi-definite Program , 2022 .

[13]  Yin Zhang,et al.  On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..

[14]  Djamel Benterki,et al.  A numerical feasible interior point method for linear semidefinite programs , 2007, RAIRO Oper. Res..

[15]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[16]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[17]  Kim-Chuan Toh Some New Search Directions for Primal-Dual Interior Point Methods in Semidefinite Programming , 2000, SIAM J. Optim..

[18]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[19]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[20]  Renato D. C. Monteiro,et al.  Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..