A relaxed logarithmic barrier method for semidefinite programming
暂无分享,去创建一个
[1] Florian A. Potra,et al. Nonsymmetric Search Directions for Semidefinite Programming , 1999, SIAM J. Optim..
[2] Christian Kanzow,et al. Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results , 2002, SIAM J. Optim..
[3] Renato D. C. Monteiro,et al. A note on the existence of the Alizadeh-Haeberly-Overton direction for semidefinite programming , 1997, Math. Program..
[4] Chek Beng Chua. A New Notion of Weighted Centers for Semidefinite Programming , 2006, SIAM J. Optim..
[5] Jun Ji,et al. On the Local Convergence of a Predictor-Corrector Method for Semidefinite Programming , 1999, SIAM J. Optim..
[6] Takashi Tsuchiya,et al. Polynomial Convergence of a New Family of Primal-Dual Algorithms for Semidefinite Programming , 1999, SIAM J. Optim..
[7] Djamel Benterki,et al. A numerical implementation of an interior point method for semidefinite programming , 2003 .
[8] Masakazu Kojima,et al. A Predictor-corrector Interior-point Algorithm for the Semidenite Linear Complementarity Problem Using the Alizadeh-haeberly-overton Search Direction , 1996 .
[9] Etienne de Klerk,et al. On the Convergence of the Central Path in Semidefinite Optimization , 2002, SIAM J. Optim..
[10] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[11] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[12] Robert M. Freund,et al. Opera Tions Research Center Working Paper Condition-measure Bounds on the Behavior of the Central Trajectory of a Semi-definite Program , 2022 .
[13] Yin Zhang,et al. On Extending Some Primal-Dual Interior-Point Algorithms From Linear Programming to Semidefinite Programming , 1998, SIAM J. Optim..
[14] Djamel Benterki,et al. A numerical feasible interior point method for linear semidefinite programs , 2007, RAIRO Oper. Res..
[15] Shinji Hara,et al. Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..
[16] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[17] Kim-Chuan Toh. Some New Search Directions for Primal-Dual Interior Point Methods in Semidefinite Programming , 2000, SIAM J. Optim..
[18] Narendra Karmarkar,et al. A new polynomial-time algorithm for linear programming , 1984, Comb..
[19] Kim-Chuan Toh,et al. On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..
[20] Renato D. C. Monteiro,et al. Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..