Ramanujan-sum expansions for finite duration (FIR) sequences

Ramanujan sums have in the past been used to represent arithmetic sequences. It is shown here that for finite duration (FIR) sequences with length N, the traditional representation is not suitable. Two new types of Ramanujan-sum expansions are proposed here for the FIR case, each offering an integer basis. One of these is particularly suited to identify periodicities in the FIR sequence. This representation in fact expresses any FIR sequence as a sum of orthogonal sequences each with a hidden periodicity corresponding to a divisor of N.

[1]  Soo-Chang Pei,et al.  Odd Ramanujan Sums of Complex Roots of Unity , 2007, IEEE Signal Processing Letters.

[2]  E. T. Bell Review: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers , 1939 .

[3]  R. Padma,et al.  Ramanujan{Fourier series, the Wiener{Khintchine formula and the distribution of prime pairs , 1999 .

[4]  William A. Sethares,et al.  Periodicity transforms , 1999, IEEE Trans. Signal Process..

[5]  Michel Planat,et al.  Ramanujan sums for signal processing of low-frequency noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Karthikeyan Umapathy,et al.  Time-Frequency Analysis via Ramanujan Sums , 2012, IEEE Signal Processing Letters.

[7]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[8]  P. P. Vaidyanathan,et al.  The farey-dictionary for sparse representation of periodic signals , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[9]  Wei Yu-chuan,et al.  Multidimensional inverse lattice problem and a uniformly sampled arithmetic Fourier transform , 1997 .

[10]  Metod Saniga,et al.  Ramanujan sums analysis of long-period sequences and 1/f noise , 2008, 0812.2170.

[11]  H. Piaggio Mathematical Analysis , 1955, Nature.

[12]  M. Omair Ahmad,et al.  Ramanujan sums and discrete Fourier transforms , 2005, IEEE Signal Processing Letters.

[13]  R. D. Carmichael,et al.  Expansions of Arithmetical Functions in Infinite Series , 1932 .

[14]  P. P. Vaidyanathan Ramanujan Sums in the Context of Signal Processing—Part II: FIR Representations and Applications , 2014, IEEE Transactions on Signal Processing.

[15]  M. Bertinelli,et al.  Analysis of T-wave alternans using the Ramanujan transform , 2008, 2008 Computers in Cardiology.