Ramanujan-sum expansions for finite duration (FIR) sequences
暂无分享,去创建一个
[1] Soo-Chang Pei,et al. Odd Ramanujan Sums of Complex Roots of Unity , 2007, IEEE Signal Processing Letters.
[2] E. T. Bell. Review: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers , 1939 .
[3] R. Padma,et al. Ramanujan{Fourier series, the Wiener{Khintchine formula and the distribution of prime pairs , 1999 .
[4] William A. Sethares,et al. Periodicity transforms , 1999, IEEE Trans. Signal Process..
[5] Michel Planat,et al. Ramanujan sums for signal processing of low-frequency noise. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] Karthikeyan Umapathy,et al. Time-Frequency Analysis via Ramanujan Sums , 2012, IEEE Signal Processing Letters.
[7] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[8] P. P. Vaidyanathan,et al. The farey-dictionary for sparse representation of periodic signals , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[9] Wei Yu-chuan,et al. Multidimensional inverse lattice problem and a uniformly sampled arithmetic Fourier transform , 1997 .
[10] Metod Saniga,et al. Ramanujan sums analysis of long-period sequences and 1/f noise , 2008, 0812.2170.
[11] H. Piaggio. Mathematical Analysis , 1955, Nature.
[12] M. Omair Ahmad,et al. Ramanujan sums and discrete Fourier transforms , 2005, IEEE Signal Processing Letters.
[13] R. D. Carmichael,et al. Expansions of Arithmetical Functions in Infinite Series , 1932 .
[14] P. P. Vaidyanathan. Ramanujan Sums in the Context of Signal Processing—Part II: FIR Representations and Applications , 2014, IEEE Transactions on Signal Processing.
[15] M. Bertinelli,et al. Analysis of T-wave alternans using the Ramanujan transform , 2008, 2008 Computers in Cardiology.