Are Tags Better Than Audio? The Effect of Joint Use of Tags and Audio Content Features for Artistic Style Clustering

Social tags are receiving growing interests in information retrieval. In music information retrieval previous research has demonstrated that tags can assist in music classification and clustering. This paper studies the problem of combining tags and audio contents for artistic style clustering. After studying the effectiveness of using tags and audio contents separately for clustering, this paper proposes a novel language model that makes use of both data sources. Experiments with various methods for combining feature sets demonstrate that tag features are more useful than audio content features for style clustering and that the proposed model can marginally improve clustering performance by combing tags and audio contents.

[1]  Hector Garcia-Molina,et al.  Clustering the tagged web , 2009, WSDM '09.

[2]  Mark Sandler,et al.  Learning Latent Semantic Models for Music from Social Tags , 2008 .

[3]  Wolfgang Nejdl,et al.  Can all tags be used for search? , 2008, CIKM '08.

[4]  George Tzanetakis,et al.  Musical genre classification of audio signals , 2002, IEEE Trans. Speech Audio Process..

[5]  Lars Schmidt-Thieme,et al.  Data Analysis, Machine Learning and Applications - Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation e.V., Albert-Ludwigs-Universität Freiburg, March 7-9, 2007 , 2008, GfKl.

[6]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[7]  Yibin Zhang,et al.  A study on content-based music classification , 2003, Seventh International Symposium on Signal Processing and Its Applications, 2003. Proceedings..

[8]  Chris H. Q. Ding,et al.  Multi-document summarization via sentence-level semantic analysis and symmetric matrix factorization , 2008, SIGIR '08.

[9]  Lars Schmidt-Thieme,et al.  Data Analysis, Machine Learning and Applications: Proceedings of the 31st Annual Conference of the Gesellschaft fr Klassifikation e.V., Albert-Ludwigs-Universitt ... Data Analysis, and Knowledge Organization) , 2008 .

[10]  Peter Knees,et al.  Augmenting Text-based Music Retrieval with Audio Similarity: Advantages and Limitations , 2009, ISMIR.

[11]  Wei Peng,et al.  Music Clustering with Constraints , 2007, ISMIR.

[12]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[13]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[14]  Chris H. Q. Ding,et al.  On the equivalence between Non-negative Matrix Factorization and Probabilistic Latent Semantic Indexing , 2008, Comput. Stat. Data Anal..

[15]  Paul Lamere,et al.  Social Tags and Music Information Retrieval , 2008, International Society for Music Information Retrieval Conference.

[16]  Tao Li,et al.  Toward intelligent music information retrieval , 2006, IEEE Transactions on Multimedia.

[17]  Joydeep Ghosh,et al.  Cluster Ensembles --- A Knowledge Reuse Framework for Combining Multiple Partitions , 2002, J. Mach. Learn. Res..

[18]  George Tzanetakis,et al.  MARSYAS SUBMISSIONS TO MIREX 2007 , 2007 .

[19]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[20]  Gert R. G. Lanckriet,et al.  Combining audio content and social context for semantic music discovery , 2009, SIGIR.

[21]  Gert R. G. Lanckriet,et al.  Five Approaches to Collecting Tags for Music , 2008, ISMIR.

[22]  Panagiotis Symeonidis,et al.  Ternary Semantic Analysis of Social Tags for Personalized Music Recommendation , 2008, ISMIR.

[23]  Yihong Gong,et al.  Integrating clustering and multi-document summarization to improve document understanding , 2008, CIKM '08.

[24]  Ronald Rosenfeld,et al.  Semi-supervised learning with graphs , 2005 .

[25]  David A. Cohn,et al.  The Missing Link - A Probabilistic Model of Document Content and Hypertext Connectivity , 2000, NIPS.

[26]  Fei Wang,et al.  Tag Integrated Multi-Label Music Style Classification with Hypergraph , 2009, ISMIR.

[27]  Myra Spiliopoulou,et al.  Tag-Aware Spectral Clustering of Music Items , 2009, ISMIR.

[28]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[29]  Gerhard Widmer,et al.  Improvements of Audio-Based Music Similarity and Genre Classificaton , 2005, ISMIR.

[30]  Shi-Huang Chen,et al.  Content-based music genre classification using timbral feature vectors and support vector machine , 2009, ICIS.

[31]  Hrishikesh Deshpande,et al.  CLASSIFICATION OF MUSIC SIGNALS IN THE VISUAL DOMAIN , 2001 .

[32]  Tao Li,et al.  A comparative study on content-based music genre classification , 2003, SIGIR.

[33]  Tao Li,et al.  Towards Intelligent Music Information Retrieval , 2005 .