On finitely generated closures in the theory of cutting planes

Let $P$ be a rational polyhedron in $\mathbb{R}^d$ and let $\mathcal{L}$ be a class of $d$-dimensional maximal lattice-free rational polyhedra in $\mathbb{R}^d$. For $L \in \mathcal{L}$ by $R_L(P)$ we denote the convex hull of points belonging to $P$ but not to the interior of $L$. Andersen, Louveaux and Weismantel showed that if the so-called max-facet-width of all $L \in \mathcal{L}$ is bounded from above by a constant independent of $L$, then $\bigcap_{L\in \mathcal{L}} R_L(P)$ is a rational polyhedron. We give a short proof of a generalization of this result. We also give a characterization for the boundedness of the max-facet-width on $\mathcal{L}$. The presented results are motivated by applications in cutting-plane theory from mixed-integer optimization.

[1]  K. Ball CONVEX BODIES: THE BRUNN–MINKOWSKI THEORY , 1994 .

[2]  Gérard Cornuéjols,et al.  Maximal Lattice-Free Convex Sets in Linear Subspaces , 2010, Math. Oper. Res..

[3]  William J. Cook,et al.  Chvátal closures for mixed integer programming problems , 1990, Math. Program..

[4]  Günter M. Ziegler,et al.  Projecting Lattice Polytopes Without Interior Lattice Points , 2011, Math. Oper. Res..

[5]  S POLYTOPE,et al.  On the Number of Convex Lattice Polytopes , 2005 .

[6]  Kent Andersen,et al.  An Analysis of Mixed Integer Linear Sets Based on Lattice Point Free Convex Sets , 2009, Math. Oper. Res..

[7]  Gennadiy Averkov,et al.  A proof of Lovász’s theorem on maximal lattice-free sets , 2011 .

[8]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[9]  Gérard Cornuéjols,et al.  Polyhedral Approaches to Mixed Integer Linear Programming , 2010, 50 Years of Integer Programming.

[10]  Alexander Schrijver,et al.  On Cutting Planes , 1980 .

[11]  Claus-Peter Schnorr,et al.  Geometry of Numbers and Integer Programming (Summary) , 1988, STACS.

[12]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[13]  Egon Balas,et al.  Intersection Cuts - A New Type of Cutting Planes for Integer Programming , 1971, Oper. Res..

[14]  Robert Weismantel,et al.  Maximal Lattice-Free Polyhedra: Finiteness and an Explicit Description in Dimension Three , 2010, Math. Oper. Res..

[15]  H. Milton,et al.  On the Chvatal-Gomory Closure of a Compact Convex Set , 2010 .

[16]  Imre Bárány,et al.  On the number of convex lattice polytopes , 1992 .

[17]  Matthias Köppe,et al.  The triangle closure is a polyhedron , 2011, Math. Program..

[18]  Alberto Del Pia,et al.  On convergence in mixed integer programming , 2012, Math. Program..

[19]  G. Averkov,et al.  Inequalities for the lattice width of lattice-free convex sets in the plane , 2010, 1003.4365.

[20]  Vasek Chvátal,et al.  Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..

[21]  G. Cornuéjols,et al.  Corner Polyhedron and Intersection Cuts , 2011 .