Guided Pareto Local Search and its Application to the 0/1 Multi-objective Knapsack Problems
暂无分享,去创建一个
[1] Arnaud Fréville,et al. Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.
[2] Patrick Prosser,et al. Guided Local Search for the Vehicle Routing Problem , 1997 .
[3] Edward P. K. Tsang,et al. Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..
[4] Mehrdad Tamiz,et al. Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..
[5] E. Tsang,et al. Guided Local Search , 2010 .
[6] P. John Clarkson,et al. Multi-objective Parallel Tabu Search , 2004, PPSN.
[7] Ujjwal Maulik,et al. A Simulated Annealing-Based Multiobjective Optimization Algorithm: AMOSA , 2008, IEEE Transactions on Evolutionary Computation.
[8] Kalyanmoy Deb,et al. A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..
[9] Andrzej Jaszkiewicz,et al. On the performance of multiple-objective genetic local search on the 0/1 knapsack problem - a comparative experiment , 2002, IEEE Trans. Evol. Comput..
[10] Mhand Hifi,et al. Heuristic algorithms for the multiple-choice multidimensional knapsack problem , 2004, J. Oper. Res. Soc..
[11] Hisao Ishibuchi,et al. Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms , 2006, PPSN.
[12] Edward P. K. Tsang,et al. Fast local search and guided local search and their application to British Telecom's workforce scheduling problem , 1997, Oper. Res. Lett..
[13] Jacques Teghem,et al. Two-phase Pareto local search for the biobjective traveling salesman problem , 2010, J. Heuristics.
[14] Marco Laumanns,et al. SPEA2: Improving the strength pareto evolutionary algorithm , 2001 .
[15] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[16] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[17] Michel Gendreau,et al. TRAVELING SALESMAN PROBLEMS WITH PROFITS: AN OVERVIEW , 2001 .
[18] U Aickelin,et al. Handbook of metaheuristics (International series in operations research and management science) , 2005 .
[19] Rajeev Kumar,et al. Pareto Evolutionary Algorithm Hybridized with Local Search for Biobjective TSP , 2007 .
[20] Arnaud Liefooghe,et al. A Study on Dominance-Based Local Search Approaches for Multiobjective Combinatorial Optimization , 2009, SLS.
[21] Andrzej Jaszkiewicz,et al. Pareto memetic algorithm with path relinking for bi-objective traveling salesperson problem , 2009, Eur. J. Oper. Res..
[22] David W. Corne,et al. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.
[23] Thomas Stützle,et al. Pareto Local Optimum Sets in the Biobjective Traveling Salesman Problem: An Experimental Study , 2004, Metaheuristics for Multiobjective Optimisation.
[24] E. L. Ulungu,et al. MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .
[25] Tapabrata Ray,et al. A Memetic Algorithm for Dynamic Multiobjective Optimization , 2009 .
[26] Carlos A. Coello Coello,et al. Evolutionary multiobjective optimization , 2011, WIREs Data Mining Knowl. Discov..
[27] Qingfu Zhang,et al. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition , 2007, IEEE Transactions on Evolutionary Computation.
[28] Evan J. Hughes,et al. Evolutionary many-objective optimisation: many once or one many? , 2005, 2005 IEEE Congress on Evolutionary Computation.
[29] Evripidis Bampis,et al. A Dynasearch Neighborhood for the Bicriteria Traveling Salesman Problem , 2004, Metaheuristics for Multiobjective Optimisation.