An Adaptive Efficient Test for Gumbel Domain of Attraction

We consider n independent observations, generated identically by some distribution function, which belongs to the domain of attraction of an extreme value distribution with unknown shape and scale parameter. We treat the scale parameter as a nuisance parameter and establish an adaptive efficient test sequence, which is based on the kn largest observations, for the Gumbel domain of attraction. Efficiency is achieved along certain contiguous extreme value alternatives within the concept of local asymptotic normal- ity (LAN). Simulations exemplify the results.

[1]  L. de Haan,et al.  On the maximal life span of humans. , 1994, Mathematical population studies.

[2]  Michael Falk,et al.  LAN of extreme order statistics , 1995 .

[3]  Grace L. Yang,et al.  Asymptotics In Statistics , 1990 .

[4]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[5]  L. Haan,et al.  Residual Life Time at Great Age , 1974 .

[6]  Infinitely Divisible Statistical Experiments , 1985 .

[7]  M. Ivette Gomes,et al.  Statistical choice of extremal models for complete and censored data , 1985 .

[8]  J. Pickands Statistical Inference Using Extreme Order Statistics , 1975 .

[9]  A. M. Hasofer,et al.  A Test for Extreme Value Domain of Attraction , 1992 .

[10]  Michael Falk,et al.  On testing the extreme value index via the pot-method , 1995 .

[11]  J. Hüsler,et al.  Laws of Small Numbers: Extremes and Rare Events , 1994 .

[12]  J. V. Witter,et al.  Testing exponentiality against generalised Pareto distribution , 1985 .

[13]  Hermann Witting,et al.  Mathematische Statistik II , 1985 .

[14]  Frank Marohn,et al.  ON TESTING THE EXPONENTIAL AND GUMBEL DISTRIBUTION , 1994 .

[15]  Michael Falk,et al.  A note on uniform asymptotic normality of intermediate order statistics , 1989, Annals of the Institute of Statistical Mathematics.

[16]  A. Janssen,et al.  On statistical information of extreme order statistics, local extreme value alternatives, and poisson point processes , 1994 .

[17]  L. L. Cam,et al.  Asymptotic Methods In Statistical Decision Theory , 1986 .

[18]  James V. Bondar,et al.  Mathematical theory of statistics , 1985 .

[19]  M. Ivette Gomes,et al.  Inference in a Multivariate Generalized Extreme Value Model-Asymptotic Properties of Two Test Statistics , 1986 .

[20]  M. Ivette Gomes,et al.  Comparison of Extremal Models through Statistical Choice in Multidimensional Backgrounds , 1989 .

[21]  Laurens de Haan,et al.  Extreme Value Statistics , 1994 .

[22]  F. Marohn Contributions to a Local Approach in Extreme Value Statistics , 1995 .