Transit sets of two-point crossover

Genetic Algorithms typically invoke crossover operators to two parents. The transit set R k ( x, y ) comprises all offsprings of this form. It forms the tope set of an uniform oriented matroid with Vapnik-Chervonenkis dimension k + 1 . The Topological Representation Theorem for oriented matroids thus implies a representation in terms of pseudosphere arrangements. This makes it possible to study 2 -point crossover in detail and to characterize the partial cubes defined by the transit sets of two-point crossover.

[1]  Ferdoos Hossein Nezhad,et al.  Transit sets of -point crossover operators , 2020, AKCE Int. J. Graphs Comb..

[2]  Kolja B. Knauer,et al.  On Tope Graphs of Complexes of Oriented Matroids , 2017, Discret. Comput. Geom..

[3]  Alberto Moraglio,et al.  A Unifying View on Recombination Spaces and Abstract Convex Evolutionary Search , 2019, EvoCOP.

[4]  Alberto Moraglio,et al.  Bridging Elementary Landscapes and a Geometric Theory of Evolutionary Algorithms: First Steps , 2018, PPSN.

[5]  Padmavathi Kora,et al.  Crossover Operators in Genetic Algorithms: A Review , 2017 .

[6]  Martyn Mulder,et al.  Transit functions on graphs (and posets) , 2007 .

[7]  Simon King,et al.  The Topological Representation of Oriented Matroids , 2005, Discret. Comput. Geom..

[8]  Nicholas J. Radcliffe,et al.  The algebra of genetic algorithms , 1994, Annals of Mathematics and Artificial Intelligence.

[9]  Kenneth A. De Jong,et al.  A formal analysis of the role of multi-point crossover in genetic algorithms , 1992, Annals of Mathematics and Artificial Intelligence.

[10]  Thomas Bäck,et al.  Theory of Genetic Algorithms , 2001, Current Trends in Theoretical Computer Science.

[11]  SpacesPETER F. STADLERInstitut Evolvability of Complex Characters : Population Dependent Fourier Decomposition of FitnessLandscapes over Recombination , 1999 .

[12]  Peter F. Stadler,et al.  Algebraic Theory of Recombination Spaces , 1997, Evolutionary Computation.

[13]  Thomas M. English,et al.  Some Geometric and Algebraic Results on Crossover , 1997, Evolutionary Programming.

[14]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[15]  Günter P. Wagner,et al.  Recombination induced hypergraphs: A new approach to mutation-recombination isomorphism , 1996, Complex..

[16]  Paul Field,et al.  Nonbinary Transforms for Genetic Algorithm Problems , 1994, Complex Syst..

[17]  Emo Welzl,et al.  Vapnik-Chervonenkis dimension and (pseudo-)hyperplane arrangements , 1994, Discret. Comput. Geom..

[18]  Joseph C. Culberson,et al.  Mutation-Crossover Isomorphisms and the Construction of Discriminating Functions , 1994, Evolutionary Computation.

[19]  Komei Fukuda,et al.  Antipodal graphs and oriented matroids , 1993, Discret. Math..

[20]  Takao Nishizeki,et al.  Planar Graphs: Theory and Algorithms , 1988 .

[21]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[23]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[24]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .