A Rank-Metric Approach to Error Control in Random Network Coding

The problem of error control in random linear network coding is addressed from a matrix perspective that is closely related to the subspace perspective of Rotter and Kschischang. A large class of constant-dimension subspace codes is investigated. It is shown that codes in this class can be easily constructed from rank-metric codes, while preserving their distance properties. Moreover, it is shown that minimum distance decoding of such subspace codes can be reformulated as a generalized decoding problem for rank-metric codes where partial information about the error is available. This partial information may be in the form of erasures (knowledge of an error location but not its value) and deviations (knowledge of an error value but not its location). Taking erasures and deviations into account (when they occur) strictly increases the error correction capability of a code: if mu erasures and delta deviations occur, then errors of rank t can always be corrected provided that 2t les d - 1 + mu + delta, where d is the minimum rank distance of the code. For Gabidulin codes, an important family of maximum rank distance codes, an efficient decoding algorithm is proposed that can properly exploit erasures and deviations. In a network coding application, where n packets of length M over F(q) are transmitted, the complexity of the decoding algorithm is given by O(dM) operations in an extension field F(qn).

[1]  Frank R. Kschischang,et al.  On Metrics for Error Correction in Network Coding , 2008, IEEE Transactions on Information Theory.

[2]  R. Koetter,et al.  The benefits of coding over routing in a randomized setting , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[3]  E. Gabidulin,et al.  A new method of erasure correction by rank codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[4]  Frank R. Kschischang,et al.  Using Rank-Metric Codes for Error Correction in Random Network Coding , 2007, 2007 IEEE International Symposium on Information Theory.

[5]  Pierre Loidreau,et al.  Properties of codes in rank metric , 2006, ArXiv.

[6]  F.R. Kschischang,et al.  Rank-Metric Codes for Priority Encoding Transmission with Network Coding , 2007, 2007 10th Canadian Workshop on Information Theory (CWIT).

[7]  Maximilien Gadouleau,et al.  GENp1-1: Properties of Codes with the Rank Metric , 2006, IEEE Globecom 2006.

[8]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2008, IEEE Trans. Inf. Theory.

[9]  Ron M. Roth,et al.  Location-correcting codes , 1996, IEEE Trans. Inf. Theory.

[10]  Rudolf Lide,et al.  Finite fields , 1983 .

[11]  K. K. Chi,et al.  Analysis of network error correction based on network coding , 2005 .

[12]  R. Yeung,et al.  Characterizations of Network Error Correction / Detection and Erasure Correction , 2007 .

[13]  Ning Cai,et al.  Network Error Correction, I: Basic Concepts and Upper Bounds , 2006, Commun. Inf. Syst..

[14]  Baochun Li,et al.  How Practical is Network Coding? , 2006, 200614th IEEE International Workshop on Quality of Service.

[15]  R. Yeung,et al.  NETWORK ERROR CORRECTION, PART II: LOWER BOUNDS , 2006 .

[16]  R. Yeung,et al.  NETWORK ERROR CORRECTION , PART I : BASIC CONCEPTS AND UPPER BOUNDS , 2006 .

[17]  Simon Plass,et al.  Fast decoding of rank-codes with rank errors and column erasures , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[18]  K. Jain,et al.  Practical Network Coding , 2003 .

[19]  Reihaneh Safavi-Naini,et al.  Linear authentication codes: bounds and constructions , 2001, IEEE Trans. Inf. Theory.

[20]  Zhen Zhang,et al.  Linear Network Error Correction Codes in Packet Networks , 2008, IEEE Transactions on Information Theory.

[21]  Ernst M. Gabidulin,et al.  Error and erasure correcting algorithms for rank codes , 2008, Des. Codes Cryptogr..

[22]  Pierre Loidreau,et al.  A Welch-Berlekamp Like Algorithm for Decoding Gabidulin Codes , 2005, WCC.

[23]  Shu-Tao Xia,et al.  Johnson type bounds on constant dimension codes , 2007, Des. Codes Cryptogr..

[24]  Tracey Ho,et al.  Resilient network coding in the presence of Byzantine adversaries , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[25]  Tracey Ho,et al.  A Random Linear Network Coding Approach to Multicast , 2006, IEEE Transactions on Information Theory.

[26]  Ning Cai,et al.  Network coding and error correction , 2002, Proceedings of the IEEE Information Theory Workshop.

[27]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[28]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[29]  Zhen Zhang,et al.  Network Error Correction Coding in Packetized Networks , 2006, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[30]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[31]  Ning Cai,et al.  Network error correction , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[32]  Frank R. Kschischang,et al.  Coding for Errors and Erasures in Random Network Coding , 2007, IEEE Transactions on Information Theory.

[33]  K. Conrad,et al.  Finite Fields , 2018, Series and Products in the Development of Mathematics.

[34]  Simon Plass,et al.  Error and Erasure Decoding of Rank-Codes with a Modified Berlekamp-Massey Algorithm , 2004 .

[35]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[36]  Ron M. Roth,et al.  Probabilistic algorithm for finding roots of linearized polynomials , 2008, Des. Codes Cryptogr..