Implementing time series identification methodology using wireless sensor networks

Wireless sensor networks being a collection of numerous sensor nodes, each with sensing (temperature, humidity, sound level, light intensity, magnetism, etc.) and wireless communication capabilities, provide huge opportunities for monitoring and mathematical modeling of the time-evolution of the physical quantities under investigation. Starting from the measurements collected by the sensor nodes inside an investigated spatial distributed system, this paper offers an efficient methodology to identify time series.

[1]  Thomas A. Wettergren,et al.  Coverage and Reliability of Randomly Distributed Sensor Systems with Heterogeneous Detection Range , 2009, Int. J. Distributed Sens. Networks.

[2]  Simone Gabriele,et al.  Redundant coverage for noise reduction in dynamic sensor networks , 2008 .

[3]  Donald Morrill Of Systems , 2009 .

[4]  G. Milovanović,et al.  Interpolation Processes: Basic Theory and Applications , 2008 .

[5]  Zoran Bojkovic,et al.  A survey on wireless sensor networks deployment , 2008 .

[6]  Lang Tong,et al.  Sensor networks with mobile agents , 2003, IEEE Military Communications Conference, 2003. MILCOM 2003..

[7]  Mani B. Srivastava,et al.  Dynamic fine-grained localization in Ad-Hoc networks of sensors , 2001, MobiCom '01.

[8]  Michael N. DeMers,et al.  Fundamentals of Geographic Information Systems , 1996 .

[9]  Joseph R. Cavallaro,et al.  Efficient implementation of rotation operations for high performance QRD-RLS filtering , 1997, Proceedings IEEE International Conference on Application-Specific Systems, Architectures and Processors.

[10]  Y. Selen,et al.  Model-order selection: a review of information criterion rules , 2004, IEEE Signal Processing Magazine.

[11]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[12]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[13]  Constantin Volosencu,et al.  Identification of distributed parameter systems, based on sensor networks and artificial intelligence , 2008 .

[14]  Xin Zhang,et al.  How to distribute sensors in a random field? , 2004, Third International Symposium on Information Processing in Sensor Networks, 2004. IPSN 2004.

[15]  Georgios B. Giannakis Keynote lecture I: distributed estimation using wireless sensor networks , 2008, ICC 2008.

[16]  David P. Dobkin,et al.  The quickhull algorithm for convex hulls , 1996, TOMS.

[17]  M.I. Abd-El-Barr,et al.  Wireless sensor networks - part I: topology and design issues , 2005, Canadian Conference on Electrical and Computer Engineering, 2005..

[18]  Constantin Volosencu,et al.  Identification in sensor networks , 2008, ICIA 2008.