Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning

We propose a forecasting approach for solar flares based on data from Solar Cycle 24, taken by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory (SDO) mission. In particular, we use the Space-weather HMI Active Region Patches (SHARP) product that facilitates cut-out magnetograms of solar active regions (AR) in the Sun in near-realtime (NRT), taken over a five-year interval (2012 – 2016). Our approach utilizes a set of thirteen predictors, which are not included in the SHARP metadata, extracted from line-of-sight and vector photospheric magnetograms. We exploit several machine learning (ML) and conventional statistics techniques to predict flares of peak magnitude >M1${>}\,\mbox{M1}$ and >C1${>}\,\mbox{C1}$ within a 24 h forecast window. The ML methods used are multi-layer perceptrons (MLP), support vector machines (SVM), and random forests (RF). We conclude that random forests could be the prediction technique of choice for our sample, with the second-best method being multi-layer perceptrons, subject to an entropy objective function. A Monte Carlo simulation showed that the best-performing method gives accuracy ACC=0.93(0.00)$\mathrm{ACC}=0.93(0.00)$, true skill statistic TSS=0.74(0.02)$\mathrm{TSS}=0.74(0.02)$, and Heidke skill score HSS=0.49(0.01)$\mathrm{HSS}=0.49(0.01)$ for >M1${>}\,\mbox{M1}$ flare prediction with probability threshold 15% and ACC=0.84(0.00)$\mathrm{ACC}=0.84(0.00)$, TSS=0.60(0.01)$\mathrm{TSS}=0.60(0.01)$, and HSS=0.59(0.01)$\mathrm{HSS}=0.59(0.01)$ for >C1${>}\,\mbox{C1}$ flare prediction with probability threshold 35%.

[1]  Torus instability. , 2006, Physical review letters.

[2]  Huaning Wang,et al.  Solar flare forecasting model supported with artificial neural network techniques , 2008 .

[3]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[4]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[5]  Rongzhi Li,et al.  Application of support vector machine combined with K-nearest neighbors in solar flare and solar proton events forecasting , 2008 .

[6]  W. Greene,et al.  计量经济分析 = Econometric analysis , 2009 .

[7]  G. A. Gary,et al.  Magnetogram Measures of Total Nonpotentiality for Prediction of Solar Coronal Mass Ejections from Active Regions of Any Degree of Magnetic Complexity , 2008 .

[8]  Chih-Jen Lin,et al.  Combining SVMs with Various Feature Selection Strategies , 2006, Feature Extraction.

[9]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[10]  D. Falconer,et al.  MAG4 versus alternative techniques for forecasting active region flare productivity , 2014, Space weather : the international journal of research & applications.

[11]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[12]  Theodor J. Stewart,et al.  Multiple Criteria Decision Analysis , 2001 .

[13]  G. Aulanier,et al.  CRITICAL DECAY INDEX AT THE ONSET OF SOLAR ERUPTIONS , 2015, 1510.03713.

[14]  Rami Qahwaji,et al.  Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares , 2009 .

[15]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[16]  Senén Barro,et al.  Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..

[17]  Stanley S. Ipson,et al.  A new technique for the calculation and 3D visualisation of magnetic complexities on solar satellite images , 2010, The Visual Computer.

[18]  Rami Qahwaji,et al.  Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection , 2011, Solar Physics.

[19]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space-Weather HMI Active Region Patches , 2014, 1404.1879.

[20]  Haimin Wang,et al.  Automated flare forecasting using a statistical learning technique , 2010 .

[21]  C. Alissandrakis,et al.  On the computation of constant alpha force-free magnetic field , 1981 .

[22]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[23]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[24]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[25]  B. Granett Probing the sparse tails of redshift distributions with Voronoi tessellations , 2016, Astron. Comput..

[26]  L. Boucheron,et al.  PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION , 2015, 1511.01941.

[27]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[28]  Ignacio Rojas,et al.  Neural networks: An overview of early research, current frameworks and new challenges , 2016, Neurocomputing.

[29]  Ricardo Vilalta,et al.  A machine learning approach to Cepheid variable star classification using data alignment and maximum likelihood , 2013, Astron. Comput..

[30]  W. Briggs Statistical Methods in the Atmospheric Sciences , 2007 .

[31]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[32]  Kurt Hornik,et al.  The support vector machine under test , 2003, Neurocomputing.

[33]  D. S. Bloomfield,et al.  TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS , 2012, 1202.5995.

[34]  M. Temmer,et al.  An Observational Overview of Solar Flares , 2011, 1109.5932.

[35]  A. F. Barghouty,et al.  PRIOR FLARING AS A COMPLEMENT TO FREE MAGNETIC ENERGY FOR FORECASTING SOLAR ERUPTIONS , 2012 .

[36]  Graham Barnes,et al.  A Comparison of Classifiers for Solar Energetic Events , 2016, Astroinformatics.

[37]  Chih-Jen Lin,et al.  Feature Ranking Using Linear SVM , 2008, WCCI Causation and Prediction Challenge.

[38]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[39]  Rainer Winkelmann,et al.  Analysis of Microdata , 2006 .

[40]  Alan M. Title,et al.  The solar oscillations investigation - Michelson Doppler Imager. , 1992 .

[41]  L. Boucheron,et al.  An automated classification approach to ranking photospheric proxies of magnetic energy build-up , 2015, 1506.08717.

[42]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[43]  Monica G. Bobra,et al.  SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM , 2014, 1411.1405.

[44]  J. T. Hoeksema,et al.  The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .

[45]  Daren Yu,et al.  Short-Term Solar Flare Prediction Using a Sequential Supervised Learning Method , 2009 .

[46]  D. Rust,et al.  Quantitative Forecasting of Major Solar Flares , 2007 .

[47]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .

[48]  Thomas Lengauer,et al.  ROCR: visualizing classifier performance in R , 2005, Bioinform..

[49]  R. S. de Souza,et al.  The overlooked potential of Generalized Linear Models in astronomy, I: Binomial regression , 2014, Astron. Comput..

[50]  P. Heidke,et al.  Berechnung Des Erfolges Und Der Güte Der Windstärkevorhersagen Im Sturmwarnungsdienst , 1926 .

[51]  B. van der Holst,et al.  BUILDUP OF MAGNETIC SHEAR AND FREE ENERGY DURING FLUX EMERGENCE AND CANCELLATION , 2012, 1205.3764.

[52]  Haimin Wang,et al.  Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm , 2017, 1706.02422.

[53]  G. Barnes,et al.  Implementing a Magnetic Charge Topology Model for Solar Active Regions , 2005 .

[54]  A. F. Barghouty,et al.  A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active‐region free magnetic energy , 2011 .

[55]  Leo Breiman,et al.  Classification and Regression Trees , 1984 .

[56]  V. Uritsky,et al.  Spatio-Temporal Scaling of Turbulent Photospheric Line-of-Sight Magnetic Field in Active Region NOAA 11158 , 2014, 1402.5934.

[57]  Haimin Wang,et al.  Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions , 2009 .

[58]  Kurt Hornik,et al.  Misc Functions of the Department of Statistics, ProbabilityTheory Group (Formerly: E1071), TU Wien , 2015 .

[59]  C. Marzban The ROC Curve and the Area under It as Performance Measures , 2004 .

[60]  Andy Liaw,et al.  Classification and Regression by randomForest , 2007 .

[61]  Carolus J. Schrijver,et al.  A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting , 2007 .

[62]  Thuy Mai,et al.  Solar Dynamics Observatory (SDO) , 2015 .

[63]  Rafal A. Angryk,et al.  Solar image parameter data from the SDO: Long-term curation and data mining , 2015 .