Forecasting Solar Flares Using Magnetogram-based Predictors and Machine Learning
暂无分享,去创建一个
Manolis K. Georgoulis | Kostas Florios | Federico Benvenuto | D. S. Bloomfield | Jordan A. Guerra | D. Shaun Bloomfield | Ioannis Kontogiannis | Sung-Hong Park | F. Benvenuto | Sung-Hong Park | K. Florios | I. Kontogiannis | J. A. Guerra | M. Georgoulis
[1] Torus instability. , 2006, Physical review letters.
[2] Huaning Wang,et al. Solar flare forecasting model supported with artificial neural network techniques , 2008 .
[3] Chih-Jen Lin,et al. LIBSVM: A library for support vector machines , 2011, TIST.
[4] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[5] Rongzhi Li,et al. Application of support vector machine combined with K-nearest neighbors in solar flare and solar proton events forecasting , 2008 .
[6] W. Greene,et al. 计量经济分析 = Econometric analysis , 2009 .
[7] G. A. Gary,et al. Magnetogram Measures of Total Nonpotentiality for Prediction of Solar Coronal Mass Ejections from Active Regions of Any Degree of Magnetic Complexity , 2008 .
[8] Chih-Jen Lin,et al. Combining SVMs with Various Feature Selection Strategies , 2006, Feature Extraction.
[9] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[10] D. Falconer,et al. MAG4 versus alternative techniques for forecasting active region flare productivity , 2014, Space weather : the international journal of research & applications.
[11] Ian H. Witten,et al. The WEKA data mining software: an update , 2009, SKDD.
[12] Theodor J. Stewart,et al. Multiple Criteria Decision Analysis , 2001 .
[13] G. Aulanier,et al. CRITICAL DECAY INDEX AT THE ONSET OF SOLAR ERUPTIONS , 2015, 1510.03713.
[14] Rami Qahwaji,et al. Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares , 2009 .
[15] Robert Tibshirani,et al. The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.
[16] Senén Barro,et al. Do we need hundreds of classifiers to solve real world classification problems? , 2014, J. Mach. Learn. Res..
[17] Stanley S. Ipson,et al. A new technique for the calculation and 3D visualisation of magnetic complexities on solar satellite images , 2010, The Visual Computer.
[18] Rami Qahwaji,et al. Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection , 2011, Solar Physics.
[19] J. T. Hoeksema,et al. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs – Space-Weather HMI Active Region Patches , 2014, 1404.1879.
[20] Haimin Wang,et al. Automated flare forecasting using a statistical learning technique , 2010 .
[21] C. Alissandrakis,et al. On the computation of constant alpha force-free magnetic field , 1981 .
[22] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[23] Kurt Hornik,et al. Multilayer feedforward networks are universal approximators , 1989, Neural Networks.
[24] Ian H. Witten,et al. Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .
[25] B. Granett. Probing the sparse tails of redshift distributions with Voronoi tessellations , 2016, Astron. Comput..
[26] L. Boucheron,et al. PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION , 2015, 1511.01941.
[27] William N. Venables,et al. Modern Applied Statistics with S , 2010 .
[28] Ignacio Rojas,et al. Neural networks: An overview of early research, current frameworks and new challenges , 2016, Neurocomputing.
[29] Ricardo Vilalta,et al. A machine learning approach to Cepheid variable star classification using data alignment and maximum likelihood , 2013, Astron. Comput..
[30] W. Briggs. Statistical Methods in the Atmospheric Sciences , 2007 .
[31] D. Ruppert. The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .
[32] Kurt Hornik,et al. The support vector machine under test , 2003, Neurocomputing.
[33] D. S. Bloomfield,et al. TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS , 2012, 1202.5995.
[34] M. Temmer,et al. An Observational Overview of Solar Flares , 2011, 1109.5932.
[35] A. F. Barghouty,et al. PRIOR FLARING AS A COMPLEMENT TO FREE MAGNETIC ENERGY FOR FORECASTING SOLAR ERUPTIONS , 2012 .
[36] Graham Barnes,et al. A Comparison of Classifiers for Solar Energetic Events , 2016, Astroinformatics.
[37] Chih-Jen Lin,et al. Feature Ranking Using Linear SVM , 2008, WCCI Causation and Prediction Challenge.
[38] David J. C. MacKay,et al. Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.
[39] Rainer Winkelmann,et al. Analysis of Microdata , 2006 .
[40] Alan M. Title,et al. The solar oscillations investigation - Michelson Doppler Imager. , 1992 .
[41] L. Boucheron,et al. An automated classification approach to ranking photospheric proxies of magnetic energy build-up , 2015, 1506.08717.
[42] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[43] Monica G. Bobra,et al. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM , 2014, 1411.1405.
[44] J. T. Hoeksema,et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO) , 2012 .
[45] Daren Yu,et al. Short-Term Solar Flare Prediction Using a Sequential Supervised Learning Method , 2009 .
[46] D. Rust,et al. Quantitative Forecasting of Major Solar Flares , 2007 .
[47] G. Brier. VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .
[48] Thomas Lengauer,et al. ROCR: visualizing classifier performance in R , 2005, Bioinform..
[49] R. S. de Souza,et al. The overlooked potential of Generalized Linear Models in astronomy, I: Binomial regression , 2014, Astron. Comput..
[50] P. Heidke,et al. Berechnung Des Erfolges Und Der Güte Der Windstärkevorhersagen Im Sturmwarnungsdienst , 1926 .
[51] B. van der Holst,et al. BUILDUP OF MAGNETIC SHEAR AND FREE ENERGY DURING FLUX EMERGENCE AND CANCELLATION , 2012, 1205.3764.
[52] Haimin Wang,et al. Predicting Solar Flares Using SDO/HMI Vector Magnetic Data Products and the Random Forest Algorithm , 2017, 1706.02422.
[53] G. Barnes,et al. Implementing a Magnetic Charge Topology Model for Solar Active Regions , 2005 .
[54] A. F. Barghouty,et al. A tool for empirical forecasting of major flares, coronal mass ejections, and solar particle events from a proxy of active‐region free magnetic energy , 2011 .
[55] Leo Breiman,et al. Classification and Regression Trees , 1984 .
[56] V. Uritsky,et al. Spatio-Temporal Scaling of Turbulent Photospheric Line-of-Sight Magnetic Field in Active Region NOAA 11158 , 2014, 1402.5934.
[57] Haimin Wang,et al. Statistical Assessment of Photospheric Magnetic Features in Imminent Solar Flare Predictions , 2009 .
[58] Kurt Hornik,et al. Misc Functions of the Department of Statistics, ProbabilityTheory Group (Formerly: E1071), TU Wien , 2015 .
[59] C. Marzban. The ROC Curve and the Area under It as Performance Measures , 2004 .
[60] Andy Liaw,et al. Classification and Regression by randomForest , 2007 .
[61] Carolus J. Schrijver,et al. A Characteristic Magnetic Field Pattern Associated with All Major Solar Flares and Its Use in Flare Forecasting , 2007 .
[62] Thuy Mai,et al. Solar Dynamics Observatory (SDO) , 2015 .
[63] Rafal A. Angryk,et al. Solar image parameter data from the SDO: Long-term curation and data mining , 2015 .