Subharmonics and Chaos in Simple Periodically Forced Biomolecular Models.

This article uncovers a remarkable behavior in two biochemical systems that commonly appear as components of signal transduction pathways in systems biology. These systems have globally attracting steady states when unforced, so they might have been considered uninteresting from a dynamical standpoint. However, when subject to a periodic excitation, strange attractors arise via a period-doubling cascade. Quantitative analyses of the corresponding discrete chaotic trajectories are conducted numerically by computing largest Lyapunov exponents, power spectra, and autocorrelation functions. To gain insight into the geometry of the strange attractors, the phase portraits of the corresponding iterated maps are interpreted as scatter plots for which marginal distributions are additionally evaluated. The lack of entrainment to external oscillations, in even the simplest biochemical networks, represents a level of additional complexity in molecular biology, which has previously been insufficiently recognized but is plausibly biologically important.

[1]  M. Khammash,et al.  Noise Induces the Population-Level Entrainment of Incoherent, Uncoupled Intracellular Oscillators. , 2016, Cell systems.

[2]  Michael Margaliot,et al.  Entrainment to Periodic Initiation and Transition Rates in a Computational Model for Gene Translation , 2014, PloS one.

[3]  Eduardo Sontag,et al.  Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2 , 2003, Nature Cell Biology.

[4]  P. Holmes,et al.  A nonlinear oscillator with a strange attractor , 1979, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[5]  Eduardo Sontag,et al.  On the number of steady states in a multiple futile cycle , 2008, Journal of mathematical biology.

[6]  M. Feinberg,et al.  Understanding bistability in complex enzyme-driven reaction networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[7]  M. Feigenbaum The universal metric properties of nonlinear transformations , 1979 .

[8]  Stephen Wiggins,et al.  Chaos in the quasiperiodically forced duffing oscillator , 1987 .

[9]  Katherine C. Chen,et al.  Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. , 2003, Current opinion in cell biology.

[10]  M. Feigenbaum Universal behavior in nonlinear systems , 1983 .

[11]  B. Kholodenko,et al.  Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.

[12]  Alexander B. Neiman,et al.  Nonlinear Dynamics of Chaotic and Stochastic Systems: Tutorial and Modern Developments , 2003 .

[13]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[14]  A. Kalsbeek,et al.  Circadian control of glucose metabolism , 2014, Molecular metabolism.

[15]  Philip Holmes,et al.  Ninety Plus Thirty Years of Nonlinear Dynamics: Less is More and More is Different , 2005, Int. J. Bifurc. Chaos.

[16]  Georg A. Gottwald,et al.  Power spectra for deterministic chaotic dynamical systems , 2007 .

[17]  Douglas A. Lauffenburger,et al.  Polyfunctional responses by human T cells result from sequential release of cytokines , 2011, Proceedings of the National Academy of Sciences.

[18]  Eduardo D. Sontag,et al.  Non-monotonic Response to Monotonic Stimulus: Regulation of Glyoxylate Shunt Gene-Expression Dynamics in Mycobacterium tuberculosis , 2016, PLoS Comput. Biol..

[19]  Eduardo Sontag,et al.  Fold-change detection and scalar symmetry of sensory input fields , 2010, Proceedings of the National Academy of Sciences.

[20]  K. Aihara,et al.  Chaos and phase locking in normal squid axons , 1987 .

[21]  Eduardo Sontag,et al.  Transient dynamic phenotypes as criteria for model discrimination: fold-change detection in Rhodobacter sphaeroides chemotaxis , 2013, Journal of The Royal Society Interface.

[22]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[23]  J. Gillis,et al.  Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .

[24]  Willy Govaerts,et al.  Computation of normal form coefficients of cycle bifurcations of maps by algorithmic differentiation , 2010, Math. Comput. Simul..

[25]  J. Gunawardena,et al.  Unlimited multistability in multisite phosphorylation systems , 2009, Nature.

[26]  Shanmuganathan Rajasekar,et al.  Period doubling route to chaos for a BVP oscillator with periodic external force , 1988 .

[27]  Jordan C. Atlas,et al.  Sensitivity and control analysis of periodically forced reaction networks using the Green's function method. , 2007, Journal of theoretical biology.

[28]  Desmond J. Higham,et al.  An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations , 2001, SIAM Rev..

[29]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[30]  Eduardo D. Sontag,et al.  Symmetry invariance for adapting biological systems , 2010, SIAM J. Appl. Dyn. Syst..

[31]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[32]  L. Evans An Introduction to Stochastic Differential Equations , 2014 .

[33]  Roman Stocker,et al.  Response rescaling in bacterial chemotaxis , 2011, Proceedings of the National Academy of Sciences.

[34]  Y. Kuznetsov,et al.  Continuation techniques and interactive software for bifurcation analysis of ODEs and iterated maps: physics , 1993 .

[36]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[37]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[38]  J. Ferrell Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. , 2002, Current opinion in cell biology.

[39]  A. Goldbeter,et al.  From simple to complex oscillatory behavior in metabolic and genetic control networks. , 2001, Chaos.

[40]  Evelyn Sander,et al.  A period-doubling cascade precedes chaos for planar maps. , 2013, Chaos.

[41]  L. Allen An introduction to stochastic processes with applications to biology , 2003 .

[42]  A. Itō Perturbation Theory of Self-Oscillating System with a Periodic Perturbation , 1979 .

[43]  John Guckenheimer,et al.  Chaotic attractors of relaxation oscillators , 2006 .

[44]  Patrick F. Dunn,et al.  Measurement and Data Analysis for Engineering and Science , 2017 .

[45]  Stephen Wiggins Global Bifurcations and Chaos: Analytical Methods , 1988 .

[46]  Michael B. Elowitz,et al.  Combinatorial gene regulation by modulation of relative pulse timing , 2015, Nature.

[47]  Desmond J. Higham,et al.  Modeling and Simulating Chemical Reactions , 2008, SIAM Rev..

[48]  Y. Kuznetsov,et al.  BIFURCATIONS AND CHAOS IN A PERIODIC PREDATOR-PREY MODEL , 1992 .

[49]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[50]  P. J. Myrberg Iteration der reellen Polynome zweiten Grades III , 1964 .

[51]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[52]  Yoshisuke Ueda,et al.  The chaos avant-garde : memories of the early days of chaos theory , 2001 .

[53]  Stroboscopic phase portrait and strange attractors , 1978 .

[54]  Yoshisuke Ueda,et al.  The road to chaos , 1992 .

[55]  Eduardo D. Sontag,et al.  Oscillatory stimuli differentiate adapting circuit topologies , 2017, Nature Methods.

[56]  Cori Bargmann,et al.  High-throughput imaging of neuronal activity in Caenorhabditis elegans , 2013, Proceedings of the National Academy of Sciences.

[57]  Gregory D. Smith,et al.  The capacity for multistability in small gene regulatory networks , 2009 .

[58]  René Thomas On the Relation Between the Logical Structure of Systems and Their Ability to Generate Multiple Steady States or Sustained Oscillations , 1981 .

[59]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .