Direct Synthesis of Selenium Nanowire Mesh on a Solid Substrate and Insights into Ultrafast Photocarrier Dynamics

Selenium (Se) nanowires have generated much interest both for the fundamental understanding of crystal formation and growth and for technological applications in optoelectronics, imaging, piezoelectricity, catalysis, and energy harvesting and storage. Several methods have been established to synthesize Se nanowires, but they require sophisticated fabrication steps, are energy intensive, and may involve complex chemical reactions. Moreover, despite an increasing interest, little is known regarding photocarrier dynamics of Se nanowires. Here, we investigate a solution-based approach for the facile synthesis of single-crystal Se nanowires over the large scale where nanowires are directly grown from an amorphous bulk in a solution at room temperature without any chemical reaction. We study the nanowire nucleation and growth mechanism via electron microscopy. We also investigate, for the first time, the charge carrier dynamics and mobility of Se nanowire meshes by means of ultrafast transient absorption spectr...

[1]  Sonochemistry , 1990, Science.

[2]  Younan Xia,et al.  Synthesis and Characterization of Uniform Nanowires of Trigonal Selenium , 2002 .

[3]  Harry A. Atwater,et al.  Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes , 2014 .

[4]  Younan Xia,et al.  Sonochemical Synthesis of Trigonal Selenium Nanowires , 2003 .

[5]  S. K. Mehta,et al.  Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications , 2016 .

[6]  S. Siebentritt,et al.  Kesterites—a challenging material for solar cells , 2012 .

[7]  Ayman F. Abouraddy,et al.  Fiber photodetectors codrawn from conducting, semiconducting and insulating materials , 2004 .

[8]  Chennupati Jagadish,et al.  The influence of surfaces on the transient terahertz conductivity and electron mobility of GaAs nanowires , 2017 .

[9]  Uli Lemmer,et al.  Ultrafast carrier trapping in microcrystalline silicon observed in optical pump-terahertz probe measurements , 2001 .

[10]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[11]  J. Mort Transient Photoconductivity in Trigonal Selenium Single Crystals , 1968 .

[12]  Lei Wei,et al.  Advanced Multimaterial Electronic and Optoelectronic Fibers and Textiles , 2018, Advanced materials.

[13]  Yitai Qian,et al.  Graphene–encapsulated selenium/polyaniline core–shell nanowires with enhanced electrochemical performance for Li–Se batteries , 2015 .

[14]  P. Cherin,et al.  The crystal structure of trigonal selenium , 1967 .

[15]  Clemens Burda,et al.  Femtosecond Spectroscopic Investigation of the Carrier Lifetimes in Digenite Quantum Dots and Discrimination of the Electron and Hole Dynamics via Ultrafast Interfacial Electron Transfer , 2003 .

[16]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[17]  E. Hendry,et al.  Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy , 2011 .

[18]  Zhiping Luo,et al.  Facile fabrication of selenium (Se) nanowires for enhanced lithium storage in Li-Se battery , 2017, Ionics.

[19]  Shu-yuan Zhang,et al.  Ultra‐Thin Trigonal Selenium Nanoribbons Developed from Series‐Wound Beads , 2004 .

[20]  Masashi Yamaguchi,et al.  Coherent heterodyne time-domain spectrometry covering the entire “terahertz gap” , 2008 .

[21]  Charles M. Lieber,et al.  Ge/Si nanowire heterostructures as high-performance field-effect transistors , 2006, Nature.

[22]  Hannah J. Joyce,et al.  A review of the electrical properties of semiconductor nanowires: insights gained from terahertz conductivity spectroscopy , 2016 .

[23]  Z. Liao,et al.  Gate tunable photoconductivity of p-channel Se nanowire field effect transistors , 2009 .

[24]  Habib Mani,et al.  Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors , 2011, Sensors.

[25]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[26]  T. Pal,et al.  A facile synthesis of 1D nano structured selenium and Au decorated nano selenium: catalysts for the clock reaction , 2013 .

[27]  R. Rai Analysis of the Urbach tails in absorption spectra of undoped ZnO thin films , 2013 .

[28]  Mecit Yaman,et al.  Arrays of indefinitely long uniform nanowires and nanotubes. , 2011, Nature materials.

[29]  J. Joannopoulos,et al.  Processing and properties of centimeter-long, in-fiber, crystalline-selenium filaments , 2010 .

[30]  Xinchao Lu,et al.  Ultrafast carrier dynamics and optical properties of nanoporous silicon at terahertz frequencies , 2014 .

[31]  Wei Zhang,et al.  High Excitation Intensity Opens a New Trapping Channel in Organic–Inorganic Hybrid Perovskite Nanoparticles , 2016 .

[32]  Hongzhou Zhang,et al.  Hexagonal Selenium Nanowires Synthesized via Vapor-Phase Growth , 2004 .

[33]  J. Treusch,et al.  Temperature-Dependent Electroabsorption on the Indirect Edge of Trigonal Selenium , 1972 .

[34]  Fang Qian,et al.  Nanowire electronic and optoelectronic devices , 2006 .

[35]  M. Johnston,et al.  Hybrid Perovskites for Photovoltaics: Charge-Carrier Recombination, Diffusion, and Radiative Efficiencies. , 2016, Accounts of chemical research.

[36]  Michele Ceriotti,et al.  Semiconducting Nanowire‐Based Optoelectronic Fibers , 2017, Advanced materials.

[37]  L. Siebbeles,et al.  Mobility and Decay Dynamics of Charge Carriers in One-Dimensional Selenium van der Waals Solid , 2017, The journal of physical chemistry. C, Nanomaterials and interfaces.

[38]  Shrouq H. Aleithan,et al.  Broadband femtosecond transient absorption spectroscopy for a CVD Mo S 2 monolayer , 2015, 1512.04461.

[39]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[40]  Charles A Schmuttenmaer,et al.  Conductivity of ZnO nanowires, nanoparticles, and thin films using time-resolved terahertz spectroscopy. , 2006, The journal of physical chemistry. B.

[41]  W. Lutze,et al.  Using Cytochrome c{sub 3} to Make Selenium Nanowires , 1999 .

[42]  Prashant V. Kamat,et al.  Band filling with free charge carriers in organometal halide perovskites , 2014, Nature Photonics.

[43]  Sylvain Danto,et al.  Resolving optical illumination distributions along an axially symmetric photodetecting fiber. , 2010, Optics express.

[44]  Donhee Ham,et al.  Vertically integrated, three-dimensional nanowire complementary metal-oxide-semiconductor circuits , 2009, Proceedings of the National Academy of Sciences.

[45]  C. Cayron,et al.  Microstructure tailoring of selenium-core multimaterial optoelectronic fibers , 2017 .

[46]  D. Gerthsen,et al.  Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells. , 2014, Journal of colloid and interface science.

[47]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[48]  B. Gates,et al.  Electrokinetic assembly of selenium and silver nanowires into macroscopic fibers. , 2010, ACS nano.

[49]  W. Read,et al.  Statistics of the Recombinations of Holes and Electrons , 1952 .

[50]  Role of Interchain Interaction in Determining the Band Gap of Trigonal Selenium: A Density Functional Theory Study with a Linear Combination of Bloch Orbitals , 2014 .

[51]  P. Yang Nanowire Photonics , 2007, 2007 International Nano-Optoelectronics Workshop.