Towards a category-extended object detector with limited data

[1]  Bowen Zhao,et al.  Energy Alignment for Bias Rectification in Class Incremental Learning , 2022, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[2]  Qixiang Ye,et al.  Discrepant multiple instance learning for weakly supervised object detection , 2021, Pattern Recognit..

[3]  Dacheng Tao,et al.  Amalgamating Knowledge from Heterogeneous Graph Neural Networks , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Zhiwen Yu,et al.  Behavior regularized prototypical networks for semi-supervised few-shot image classification , 2021, Pattern Recognit..

[5]  Zunlei Feng,et al.  Factorizable Graph Convolutional Networks , 2020, NeurIPS.

[6]  Ying Wu,et al.  Object Detection with a Unified Label Space from Multiple Datasets , 2020, ECCV.

[7]  Xing Wei,et al.  Pedestrian detection in underground mines via parallel feature transfer network , 2020, Pattern Recognit..

[8]  Martin Jägersand,et al.  U2-Net: Going Deeper with Nested U-Structure for Salient Object Detection , 2020, Pattern Recognit..

[9]  Han Zhang,et al.  A Simple Semi-Supervised Learning Framework for Object Detection , 2020, ArXiv.

[10]  D. Tao,et al.  Distilling Knowledge From Graph Convolutional Networks , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Yuan Zhang,et al.  FocalMix: Semi-Supervised Learning for 3D Medical Image Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Fahad Shahbaz Khan,et al.  Incremental Object Detection via Meta-Learning , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Tao Xiang,et al.  Incremental Few-Shot Object Detection , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Thomas Fevens,et al.  FoCL: Feature-Oriented Continual Learning for Generative Models , 2020, Pattern Recognit..

[15]  Yan Wang,et al.  Cross-dataset Training for Class Increasing Object Detection , 2020, ArXiv.

[16]  Samet Akcay,et al.  Towards Automatic Threat Detection: A Survey of Advances of Deep Learning within X-ray Security Imaging , 2020, Pattern Recognit..

[17]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[18]  Yannis Avrithis,et al.  Training Object Detectors from Few Weakly-Labeled and Many Unlabeled Images , 2019, Pattern Recognit..

[19]  Shutao Xia,et al.  Maintaining Discrimination and Fairness in Class Incremental Learning , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Shilei Wen,et al.  Dynamic Instance Normalization for Arbitrary Style Transfer , 2019, AAAI.

[21]  Pietro Zanuttigh,et al.  Knowledge Distillation for Incremental Learning in Semantic Segmentation , 2019, Comput. Vis. Image Underst..

[22]  Qi Tian,et al.  An End-to-End Architecture for Class-Incremental Object Detection with Knowledge Distillation , 2019, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[23]  Kai Chen,et al.  MMDetection: Open MMLab Detection Toolbox and Benchmark , 2019, ArXiv.

[24]  Yandong Guo,et al.  Large Scale Incremental Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  David Berthelot,et al.  MixMatch: A Holistic Approach to Semi-Supervised Learning , 2019, NeurIPS.

[26]  Hao Chen,et al.  FCOS: Fully Convolutional One-Stage Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[27]  Long Chen,et al.  Improving classification with semi-supervised and fine-grained learning , 2019, Pattern Recognit..

[28]  Charles Ollion,et al.  OMNIA Faster R-CNN: Detection in the wild through dataset merging and soft distillation , 2018, ArXiv.

[29]  A. Angelova,et al.  Probabilistic Object Detection: Definition and Evaluation , 2018, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[30]  Xiangyu Zhang,et al.  Bounding Box Regression With Uncertainty for Accurate Object Detection , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Michael Milford,et al.  Evaluating Merging Strategies for Sampling-based Uncertainty Techniques in Object Detection , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[32]  Yuning Jiang,et al.  Acquisition of Localization Confidence for Accurate Object Detection , 2018, ECCV.

[33]  Larry S. Davis,et al.  Soft Sampling for Robust Object Detection , 2018, BMVC.

[34]  Dacheng Tao,et al.  Geometry-Aware Scene Text Detection with Instance Transformation Network , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  Joseph Redmon,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[36]  Niko Sünderhauf,et al.  Dropout Sampling for Robust Object Detection in Open-Set Conditions , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[37]  Cordelia Schmid,et al.  Incremental Learning of Object Detectors without Catastrophic Forgetting , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[38]  Kaiming He,et al.  Focal Loss for Dense Object Detection , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[39]  Alex Kendall,et al.  What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? , 2017, NIPS.

[40]  Christoph H. Lampert,et al.  iCaRL: Incremental Classifier and Representation Learning , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Shuo Yang,et al.  WIDER FACE: A Face Detection Benchmark , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[44]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[45]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[47]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[48]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Nojun Kwak,et al.  Consistency-based Semi-supervised Learning for Object detection , 2019, NeurIPS.

[50]  Michael McCloskey,et al.  Catastrophic Interference in Connectionist Networks: The Sequential Learning Problem , 1989 .

[51]  Christopher K. I. Williams,et al.  The Pascal Visual Object Classes (VOC) Challenge , 2010, International Journal of Computer Vision.