The art of engineering viral nanoparticles.

Viral nanotechnology is an emerging and highly interdisciplinary field in which viral nanoparticles (VNPs) are applied in diverse areas such as electronics, energy and next-generation medical devices. VNPs have been developed as candidates for novel materials, and are often described as "programmable" because they can be modified and functionalized using a number of techniques. In this review, we discuss the concepts and methods that allow VNPs to be engineered, including (i) bioconjugation chemistries, (ii) encapsulation techniques, (iii) mineralization strategies, and (iv) film and hydrogel development. With all these techniques in hand, the potential applications of VNPs are limited only by the imagination.

[1]  Angela M. Belcher,et al.  Viruses as vehicles for growth, organization and assembly of materials 1 1 The Golden Jubilee Issue , 2003 .

[2]  Mato Knez,et al.  Atomic layer deposition on biological macromolecules: metal oxide coating of tobacco mosaic virus and ferritin. , 2006, Nano letters.

[3]  Adam Brown,et al.  Preparation of silica stabilized Tobacco mosaic virus templates for the production of metal and layered nanoparticles. , 2009, Journal of colloid and interface science.

[4]  Q. Wang,et al.  Surface Modification of Tobacco Mosaic Virus with “Click” Chemistry , 2008, Chembiochem : a European journal of chemical biology.

[5]  Mato Knez,et al.  Biotemplate Synthesis of 3-nm Nickel and Cobalt Nanowires , 2003 .

[6]  G. Lomonossoff,et al.  Use of viral vectors for vaccine production in plants , 2005, Immunology and cell biology.

[7]  Duane E. Prasuhn,et al.  Bio-distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[8]  J. Rong,et al.  Oriented cell growth on self-assembled bacteriophage M13 thin films. , 2008, Chemical communications.

[9]  Angela M Belcher,et al.  Programmable assembly of nanoarchitectures using genetically engineered viruses. , 2005, Nano letters.

[10]  Paul F. Barbara,et al.  Selection of peptides with semiconductor binding specificity for directed nanocrystal assembly , 2000, Nature.

[11]  Andrew K. Udit,et al.  Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. , 2010, Chemistry & biology.

[12]  Trevor Douglas,et al.  Structural transitions in Cowpea chlorotic mottle virus (CCMV) , 2005, Physical biology.

[13]  N. Steinmetz,et al.  Environmentally benign synthesis of virus-templated, monodisperse, iron-platinum nanoparticles. , 2009, Dalton transactions.

[14]  S. Franzen,et al.  Controlled encapsidation of gold nanoparticles by a viral protein shell. , 2006, Journal of the American Chemical Society.

[15]  Duane E. Prasuhn,et al.  Plasma clearance of bacteriophage Qbeta particles as a function of surface charge. , 2008, Journal of the American Chemical Society.

[16]  George Georgiou,et al.  Virus-Based Toolkit for the Directed Synthesis of Magnetic and Semiconducting Nanowires , 2004, Science.

[17]  Trevor Douglas,et al.  Paramagnetic viral nanoparticles as potential high‐relaxivity magnetic resonance contrast agents , 2005, Magnetic resonance in medicine.

[18]  C. Bracker,et al.  The effects of various polyanions on shell formation of some spherical viruses. , 1969, Virology.

[19]  M. Young,et al.  Metal binding to cowpea chlorotic mottle virus using terbium(III) fluorescence , 2003, JBIC Journal of Biological Inorganic Chemistry.

[20]  M. Finn,et al.  Analysis and optimization of copper-catalyzed azide-alkyne cycloaddition for bioconjugation. , 2009, Angewandte Chemie.

[21]  R. Nolte,et al.  Viral capsids as templates for the production of monodisperse Prussian blue nanoparticles. , 2008, Chemical communications.

[22]  P. Stockley,et al.  Cell-specific delivery of bacteriophage-encapsidated ricin A chain. , 1995, Bioconjugate chemistry.

[23]  Ahmad S. Khalil,et al.  Single M13 bacteriophage tethering and stretching , 2007, Proceedings of the National Academy of Sciences.

[24]  John E. Johnson,et al.  Heterologous expression of the modified coat protein of Cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. , 2004, The Journal of general virology.

[25]  G. Lomonossoff,et al.  Scope for using plant viruses to present epitopes from animal pathogens , 1998, Reviews in medical virology.

[26]  Q. Wang,et al.  The promotion of osteoblastic differentiation of rat bone marrow stromal cells by a polyvalent plant mosaic virus. , 2008, Biomaterials.

[27]  J. Johnson,et al.  Presentation of heterologous peptides on plant viruses: genetics, structure, and function. , 1997, Annual review of phytopathology.

[28]  Q. Wang,et al.  Regulation of osteogenic differentiation of rat bone marrow stromal cells on 2D nanorod substrates. , 2010, Biomaterials.

[29]  Vincent M Rotello,et al.  Core-controlled polymorphism in virus-like particles , 2007, Proceedings of the National Academy of Sciences.

[30]  Ki Tae Nam,et al.  Stamped microbattery electrodes based on self-assembled M13 viruses , 2008, Proceedings of the National Academy of Sciences.

[31]  M. Botta,et al.  Magnetic resonance contrast agents from viral capsid shells: a comparison of exterior and interior cargo strategies. , 2007, Nano letters.

[32]  Stephen Mann,et al.  Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles , 2008 .

[33]  Liaohai Chen,et al.  A novel fluorescent probe: europium complex hybridized T7 phage. , 2005, Bioconjugate chemistry.

[34]  Stephen Mann,et al.  Organization of Metallic Nanoparticles Using Tobacco Mosaic Virus Templates , 2003 .

[35]  V. Rotello,et al.  Nanoparticle-templated assembly of viral protein cages. , 2006, Nano letters.

[36]  Bogdan Dragnea,et al.  Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. , 2003, Journal of the American Chemical Society.

[37]  Jason R. Clark,et al.  Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. , 2006, Trends in biotechnology.

[38]  R. Garcea,et al.  Virus-like particles as vaccines and vessels for the delivery of small molecules. , 2004, Current opinion in biotechnology.

[39]  James A Bankson,et al.  Three-dimensional tissue culture based on magnetic cell levitation. , 2010, Nature nanotechnology.

[40]  B. Strandberg,et al.  Presentation of a foreign peptide on the surface of tomato bushy stunt virus. , 1997, The Journal of general virology.

[41]  L. Makowski,et al.  Magnetic viruses via nano-capsid templates , 2006 .

[42]  John E. Johnson,et al.  Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. , 1995, Structure.

[43]  Z. Su,et al.  Layer-by-layer assembly of viral capsid for cell adhesion. , 2008, Acta biomaterialia.

[44]  Jacob M Hooker,et al.  Dual-surface-modified bacteriophage MS2 as an ideal scaffold for a viral capsid-based drug delivery system. , 2007, Bioconjugate chemistry.

[45]  John E. Johnson,et al.  Icosahedral virus particles as addressable nanoscale building blocks. , 2002, Angewandte Chemie.

[46]  Nico A J M Sommerdijk,et al.  A virus-based single-enzyme nanoreactor. , 2007, Nature nanotechnology.

[47]  Duane E. Prasuhn,et al.  Unnatural amino acid incorporation into virus-like particles. , 2008, Bioconjugate chemistry.

[48]  Sonny C. Hsiao,et al.  Viral capsid DNA aptamer conjugates as multivalent cell-targeting vehicles. , 2009, Journal of the American Chemical Society.

[49]  Wadih Arap,et al.  Networks of gold nanoparticles and bacteriophage as biological sensors and cell-targeting agents , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Q. Wang,et al.  The synergistic effects of multivalent ligand display and nanotopography on osteogenic differentiation of rat bone marrow stem cells. , 2010, Biomaterials.

[51]  Keiichi Namba,et al.  Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly. , 1986, Science.

[52]  Trevor Douglas,et al.  Biological Containers: Protein Cages as Multifunctional Nanoplatforms , 2007 .

[53]  A. Belcher,et al.  Biological Routes to Metal Alloy Ferromagnetic Nanostructures , 2004 .

[54]  S. Lommel,et al.  RNA-mediated trans-activation of transcription from a viral RNA. , 1998, Science.

[55]  Edmund Bäuerlein,et al.  Biomineralization of unicellular organisms: an unusual membrane biochemistry for the production of inorganic nano- and microstructures. , 2003, Angewandte Chemie.

[56]  Duane E. Prasuhn,et al.  Viral MRI contrast agents: coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition. , 2007, Chemical communications.

[57]  Trevor Douglas,et al.  Viruses: Making Friends with Old Foes , 2006, Science.

[58]  V. Rotello,et al.  Quantum dot encapsulation in viral capsids. , 2006, Nano letters.

[59]  M. Finn,et al.  Chemical modification of viruses and virus-like particles. , 2009, Current topics in microbiology and immunology.

[60]  Angela M Belcher,et al.  Ordering of Quantum Dots Using Genetically Engineered Viruses , 2002, Science.

[61]  Y. Chiang,et al.  Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery Electrodes , 2006, Science.

[62]  Kostas Kostarelos,et al.  Designer adenoviruses for nanomedicine and nanodiagnostics. , 2009, Trends in biotechnology.

[63]  M. Francis,et al.  Oxidative coupling of peptides to a virus capsid containing unnatural amino acids. , 2008, Chemical communications.

[64]  Trevor Douglas,et al.  Host–guest encapsulation of materials by assembled virus protein cages , 1998, Nature.

[65]  H. Scholthof,et al.  Plant virus gene vectors for transient expression of foreign proteins in plants. , 1996, Annual review of phytopathology.

[66]  R. Nolte,et al.  Monodisperse polymer-virus hybrid nanoparticles. , 2007, Organic & biomolecular chemistry.

[67]  Trevor Douglas,et al.  Viral capsids as MRI contrast agents , 2007, Magnetic resonance in medicine.

[68]  Marianne Manchester,et al.  Viral nanoparticles and virus‐like particles: platforms for contemporary vaccine design , 2010, Wiley interdisciplinary reviews. Nanomedicine and nanobiotechnology.

[69]  N. Steinmetz,et al.  Viruses and nanotechnology , 2009 .

[70]  N. Stephanopoulos,et al.  Nanoscale integration of sensitizing chromophores and porphyrins with bacteriophage MS2. , 2009, Angewandte Chemie.

[71]  R. Wagner,et al.  Virus-like particles—universal molecular toolboxes , 2007, Current Opinion in Biotechnology.

[72]  M. Burghard,et al.  Electrochemical modification of individual nano-objects , 2002 .

[73]  Dong Soo Yun,et al.  Cobalt ion mediated self-assembly of genetically engineered bacteriophage for biomimetic Co-Pt hybrid material. , 2006, Biomacromolecules.

[74]  M. Young,et al.  Biomimetic synthesis of β-TiO2 inside a viral capsid , 2008 .

[75]  Sek-Man Wong,et al.  In vitro-reassembled plant virus-like particles for loading of polyacids. , 2006, The Journal of general virology.

[76]  C. Ozkan,et al.  Digital memory device based on tobacco mosaic virus conjugated with nanoparticles , 2006, Nature nanotechnology.

[77]  S. Franzen,et al.  Encapsidation of nanoparticles by red clover necrotic mosaic virus. , 2007, Journal of the American Chemical Society.

[78]  Sek-Man Wong,et al.  Folic acid-conjugated protein cages of a plant virus: a novel delivery platform for doxorubicin. , 2007, Bioconjugate chemistry.

[79]  S. Franzen,et al.  Infusion of dye molecules into Red clover necrotic mosaic virus. , 2008, Chemical communications.

[80]  Richard J. Sharp,et al.  Bacteriophages and biotechnology: a review , 2000 .

[81]  David J Evans The bionanoscience of plant viruses: templates and synthons for new materials , 2008 .

[82]  Yun Jung Lee,et al.  Fabricating Genetically Engineered High-Power Lithium-Ion Batteries Using Multiple Virus Genes , 2009, Science.

[83]  M. Francis,et al.  Dual-surface modification of the tobacco mosaic virus. , 2005, Journal of the American Chemical Society.

[84]  N. Steinmetz,et al.  Virus-templated silica nanoparticles. , 2009, Small.

[85]  K. Kern,et al.  Spatially Selective Nucleation of Metal Clusters on the Tobacco Mosaic Virus , 2004 .

[86]  P. Singh,et al.  Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. , 2006, Advanced drug delivery reviews.

[87]  K. Kern,et al.  Copper nanowires within the central channel of tobacco mosaic virus particles , 2006 .

[88]  N. Steinmetz Viral nanoparticles as platforms for next-generation therapeutics and imaging devices. , 2010, Nanomedicine : nanotechnology, biology, and medicine.

[89]  G. Lomonossoff,et al.  Cowpea mosaic virus unmodified empty viruslike particles loaded with metal and metal oxide. , 2010, Small.

[90]  George Georgiou,et al.  Viral assembly of oriented quantum dot nanowires , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[91]  G. Stucky,et al.  Self-assembled virus-like particles with magnetic cores. , 2007, Nano letters.

[92]  Trevor Douglas,et al.  Plant viruses as biotemplates for materials and their use in nanotechnology. , 2008, Annual review of phytopathology.

[93]  M. Young,et al.  Biomimetic magnetic nanoparticles , 2005 .

[94]  P. Dawson,et al.  Rapid oxime and hydrazone ligations with aromatic aldehydes for biomolecular labeling. , 2008, Bioconjugate chemistry.

[95]  M. Francis,et al.  Modification of aniline containing proteins using an oxidative coupling strategy. , 2006, Journal of the American Chemical Society.

[96]  Anna Merzlyak,et al.  Genetically engineered nanofiber-like viruses for tissue regenerating materials. , 2009, Nano letters.

[97]  M. Young,et al.  Protein Engineering of a Viral Cage for Constrained Nanomaterials Synthesis , 2002 .

[98]  W. Gelbart,et al.  Packaging of a polymer by a viral capsid: the interplay between polymer length and capsid size. , 2008, Biophysical journal.

[99]  J. O’Neil,et al.  Genome-free Viral Capsids as Carriers for Positron Emission Tomography Radiolabels , 2008, Molecular Imaging and Biology.

[100]  Peter G Schultz,et al.  A phage display system with unnatural amino acids. , 2004, Journal of the American Chemical Society.

[101]  David A. Anderson,et al.  Virus-like particles: Passport to immune recognition , 2006, Methods.

[102]  N. Steinmetz,et al.  Buckyballs meet viral nanoparticles: candidates for biomedicine. , 2009, Journal of the American Chemical Society.

[103]  F. Tama,et al.  Removal of Divalent Cations Induces Structural Transitions in Red Clover Necrotic Mosaic Virus, Revealing a Potential Mechanism for RNA Release , 2006, Journal of Virology.

[104]  G. Stubbs,et al.  Inorganic–Organic Nanotube Composites from Template Mineralization of Tobacco Mosaic Virus , 1999 .

[105]  N. Steinmetz,et al.  Hydrazone ligation strategy to assemble multifunctional viral nanoparticles for cell imaging and tumor targeting. , 2010, Nano letters.

[106]  Chris J. Adams,et al.  RNA Bacteriophage Capsid-Mediated Drug Delivery and Epitope Presentation , 2003, Intervirology.

[107]  S. Schmid,et al.  Multivalent Display and Receptor‐Mediated Endocytosis of Transferrin on Virus‐Like Particles , 2010, Chembiochem : a European journal of chemical biology.

[108]  M. Botta,et al.  High relaxivity gadolinium hydroxypyridonate-viral capsid conjugates: nanosized MRI contrast agents. , 2008, Journal of the American Chemical Society.

[109]  A. Bellamy,et al.  The potential of plant viral vectors and transgenic plants for subunit vaccine production. , 2002, Advances in virus research.