Development of a strontium optical lattice clock for the SOC mission on the ISS
暂无分享,去创建一个
D. Holleville | R. Le Targat | S. Bize | J. Lodewyck | W. Ertmer | S. Origlia | S. Schiller | M. S. Pramod | L. Smith | Y. Singh | W. He | S. Viswam | D. Świerad | J. Hughes | K. Bongs | U. Sterr | Ch. Lisdat | S. Vogt | B. Venon | P. Gill | G. Barwood | I. R. Hill | Y. Ovchinnikov | A. Kulosa | E.-M. Rasel | J. Stuhler | W. Kaenders | W. Ertmer | E. Rasel | S. Bize | S. Schiller | J. Lodewyck | Y. Ovchinnikov | J. Stuhler | P. Gill | U. Sterr | K. Bongs | D. Holleville | B. Venon | R. Le Targat | S. Viswam | C. Lisdat | S. Origlia | M. Pramod | L. Smith | G. Barwood | W. Kaenders | A. Kulosa | I. Hill | J. Hughes | Y. Singh | S. Vogt | D. Świerad | W. He
[1] D. Wineland,et al. Optical Clocks and Relativity , 2010, Science.
[2] S. Capozziello,et al. Quantum tests of the Einstein Equivalence Principle with the STE–QUEST space mission , 2014, 1404.4307.
[3] P. Uhrich,et al. Cold atoms in space and atomic clocks: ACES , 2001 .
[4] F. Riehle,et al. Collisional losses, decoherence, and frequency shifts in optical lattice clocks with bosons. , 2009, Physical review letters.
[5] Davide Calonico,et al. Towards Neutral-atom Space Optical Clocks (SOC2): Development of high-performance transportable and breadboard optical clocks and advanced subsystems , 2012 .
[6] R. Holzwarth,et al. Einstein Gravity Explorer–a medium-class fundamental physics mission , 2009 .
[7] P. Wolf,et al. Testing General Relativity with Atomic Clocks , 2009, 0903.1166.
[8] Thomas Legero,et al. 8 × 10⁻¹⁷ fractional laser frequency instability with a long room-temperature cavity. , 2015, Optics letters.
[9] E. A. Curtis,et al. Zeeman slowers for strontium based on permanent magnets , 2014, 1402.5271.
[10] D. Holleville,et al. Development of a strontium optical lattice clock for the SOC mission on the ISS , 2015 .
[11] Stephan Schiller,et al. A transportable optical lattice clock using 171Yb , 2013, 2013 Joint European Frequency and Time Forum & International Frequency Control Symposium (EFTF/IFC).
[12] S. Schiller,et al. A narrow-line-width external cavity quantum dot laser for high-resolution spectroscopy in the near-infrared and yellow spectral ranges , 2008 .
[13] T L Nicholson,et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty , 2014, Nature Communications.
[14] Manoj Das,et al. Cryogenic optical lattice clocks , 2015, Nature Photonics.
[15] Peter Wolf,et al. Analysis of Sun/Moon gravitational redshift tests with the STE-QUEST space mission , 2015, 1509.02854.
[16] S. Vogt,et al. A transportable strontium optical lattice clock , 2014, 1409.4572.
[17] Tetsuya Ido,et al. Recoil-limited laser cooling of 87Sr atoms near the Fermi temperature. , 2003, Physical review letters.
[18] P Gill,et al. Robust frequency stabilization of multiple spectroscopy lasers with large and tunable offset frequencies. , 2013, Optics letters.
[19] Krisher. Gravitational redshift in a local freely falling frame: A proposed new null test of the equivalence principle. , 1996, Physical review. D, Particles and fields.
[20] S. Falke,et al. A compact and efficient strontium oven for laser-cooling experiments. , 2012, The Review of scientific instruments.
[21] Banesh Hoffmann,et al. Noon-Midnight Red Shift , 1961 .
[22] R. Holzwarth,et al. The space optical clocks project: Development of high-performance transportable and breadboard optical clocks and advanced subsystems , 2012, 2012 European Frequency and Time Forum.