Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs.

[1]  G. Corrado,et al.  Using a Deep Learning Algorithm and Integrated Gradients Explanation to Assist Grading for Diabetic Retinopathy. , 2019, Ophthalmology.

[2]  Hiroshi Murata,et al.  Using Deep Learning and Transfer Learning to Accurately Diagnose Early-Onset Glaucoma From Macular Optical Coherence Tomography Images. , 2019, American journal of ophthalmology.

[3]  Christopher Bowd,et al.  Performance of Deep Learning Architectures and Transfer Learning for Detecting Glaucomatous Optic Neuropathy in Fundus Photographs , 2018, Scientific Reports.

[4]  Hiroshi Murata,et al.  Development of a deep residual learning algorithm to screen for glaucoma from fundus photography , 2018, Scientific Reports.

[5]  Weidong (Tom) Cai,et al.  A Deep Learning-Based Algorithm Identifies Glaucomatous Discs Using Monoscopic Fundus Photographs. , 2018, Ophthalmology. Glaucoma.

[6]  M. He,et al.  Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. , 2018, Ophthalmology.

[7]  Jonathan Krause,et al.  Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy , 2017, Ophthalmology.

[8]  E. Finkelstein,et al.  Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images From Multiethnic Populations With Diabetes , 2017, JAMA.

[9]  F. Medeiros,et al.  Detecting Structural Progression in Glaucoma with Optical Coherence Tomography. , 2017, Ophthalmology.

[10]  Angela V. Turalba,et al.  The ISNT Rule: How Often Does It Apply to Disc Photographs and Retinal Nerve Fiber Layer Measurements in the Normal Population? , 2017, American journal of ophthalmology.

[11]  Thomas J. Fuchs,et al.  Hybrid Deep Learning on Single Wide-field Optical Coherence tomography Scans Accurately Classifies Glaucoma Suspects , 2017, Journal of glaucoma.

[12]  Subhashini Venugopalan,et al.  Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. , 2016, JAMA.

[13]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  S. Mansberger,et al.  Primary Open-Angle Glaucoma Preferred Practice Pattern(®) Guidelines. , 2016, Ophthalmology.

[15]  S. Mansberger,et al.  Primary Open-Angle Glaucoma Suspect Preferred Practice Pattern(®) Guidelines. , 2016, Ophthalmology.

[16]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[17]  L. Shi,et al.  Telemedicine for detecting diabetic retinopathy: a systematic review and meta-analysis , 2015, British Journal of Ophthalmology.

[18]  Monali S. Malvankar-Mehta,et al.  The Effectiveness of Teleglaucoma versus In-Patient Examination for Glaucoma Screening: A Systematic Review and Meta-Analysis , 2014, PloS one.

[19]  P. Newman-Casey,et al.  Gaps in glaucoma care: a systematic review of monoscopic disc photos to screen for glaucoma , 2014, Expert review of ophthalmology.

[20]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[21]  Flavio S. Lopes,et al.  Analysis of neuroretinal rim distribution and vascular pattern in eyes with presumed large physiological cupping: a comparative study , 2014, BMC Ophthalmology.

[22]  F. Medeiros,et al.  The pathophysiology and treatment of glaucoma: a review. , 2014, JAMA.

[23]  R. Weinreb,et al.  Ethnic Variation in Optic Disc Size by Fundus Photography , 2013, Current eye research.

[24]  D. Simel,et al.  Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review. , 2013, JAMA.

[25]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[26]  Rui Bernardes,et al.  Digital Ocular Fundus Imaging: A Review , 2011, Ophthalmologica.

[27]  Laura M. Chihara,et al.  Mathematical Statistics with Resampling and R , 2011 .

[28]  F. Medeiros,et al.  Managing glaucoma in developing countries. , 2011, Arquivos brasileiros de oftalmologia.

[29]  M. C. Leske,et al.  Awareness of incident open-angle glaucoma in a population study: the Barbados Eye Studies. , 2007, Ophthalmology.

[30]  C. Mardin,et al.  Normale Papillen mit großer Exkavation - eine diagnostische Herausforderung bei Glaukomen , 2006 .

[31]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[32]  F. Medeiros,et al.  Five rules to evaluate the optic disc and retinal nerve fiber layer for glaucoma. , 2005, Optometry.

[33]  P. Khaw,et al.  Primary open-angle glaucoma , 2004, The Lancet.

[34]  J. Jonas,et al.  Localized retinal nerve fiber optic nerve atrophy , 1994, Graefe's Archive for Clinical and Experimental Ophthalmology.

[35]  M. Kass,et al.  Racial differences in optic disc topography: baseline results from the confocal scanning laser ophthalmoscopy ancillary study to the ocular hypertension treatment study. , 2004, Archives of ophthalmology.

[36]  A. Rotchford,et al.  Temba glaucoma study: a population-based cross-sectional survey in urban South Africa. , 2003, Ophthalmology.

[37]  E. Chaum,et al.  Nerve fiber bundle visual field defect resulting from a giant peripapillary cotton-wool spot. , 2001, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[38]  L. Zangwill,et al.  Evaluating the Optic Disc and Retinal Nerve Fiber Layer in Glaucoma I: Clinical Examination and Photographic Methods , 2000, Seminars in ophthalmology.

[39]  Rich Caruana,et al.  Overfitting in Neural Nets: Backpropagation, Conjugate Gradient, and Early Stopping , 2000, NIPS.

[40]  George A. Williams,et al.  The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. , 1999, Controlled clinical trials.

[41]  D. Opitz,et al.  Popular Ensemble Methods: An Empirical Study , 1999, J. Artif. Intell. Res..

[42]  H. Quigley Number of people with glaucoma worldwide. , 1996, The British journal of ophthalmology.

[43]  J. Jonas,et al.  Shape of the neuroretinal rim and position of the central retinal vessels in glaucoma. , 1994, The British journal of ophthalmology.

[44]  E. Chihara,et al.  Retinal nerve fiber layer defect as an early manifestation of diabetic retinopathy. , 1993, Ophthalmology.

[45]  R. Varma,et al.  The Optic Nerve in Glaucoma , 1993 .

[46]  I. Scott,et al.  Expert agreement in evaluating the optic disc for glaucoma. , 1992, Ophthalmology.

[47]  A. Sommer,et al.  Intraobserver and interobserver agreement in measurement of optic disc characteristics. , 1988, Ophthalmology.

[48]  G. Sutton,et al.  Baring of a circumlinear vessel in glaucoma. , 1983, Archives of ophthalmology.

[49]  R. Susanna The lamina cribrosa and visual field defects in open-angle glaucoma. , 1983, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[50]  J. Herschler,et al.  Baring of the circumlinear vessel. An early sign of optic nerve damage. , 1980, Archives of ophthalmology.

[51]  Klaus Krippendorff,et al.  Content Analysis: An Introduction to Its Methodology , 1980 .

[52]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[53]  E. S. Pearson,et al.  THE USE OF CONFIDENCE OR FIDUCIAL LIMITS ILLUSTRATED IN THE CASE OF THE BINOMIAL , 1934 .