Decreasing Subsequences in Permutations and Wilf Equivalence for Involutions

In a recent paper, Backelin, West and Xin describe a map φ* that recursively replaces all occurrences of the pattern k... 21 in a permutation σ by occurrences of the pattern (k−1)... 21 k. The resulting permutation φ*(σ) contains no decreasing subsequence of length k. We prove that, rather unexpectedly, the map φ* commutes with taking the inverse of a permutation.In the BWX paper, the definition of φ* is actually extended to full rook placements on a Ferrers board (the permutations correspond to square boards), and the construction of the map φ* is the key step in proving the following result. Let T be a set of patterns starting with the prefix 12... k. Let T′ be the set of patterns obtained by replacing this prefix by k... 21 in every pattern of T. Then for all n, the number of permutations of the symmetric group $${\cal S}$$n that avoid T equals the number of permutations of $${\cal S}$$n that avoid T′.Our commutation result, generalized to Ferrers boards, implies that the number of involutions of $${\cal S}$$n that avoid T is equal to the number of involutions of $${\cal S}$$n avoiding T′, as recently conjectured by Jaggard.

[1]  Mireille Bousquet-Mélou,et al.  Four Classes of Pattern-Avoiding Permutations Under One Roof: Generating Trees with Two Labels , 2003, Electron. J. Comb..

[2]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[3]  Rodica Simion,et al.  Restricted Permutations , 1985, Eur. J. Comb..

[4]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[5]  Amitai Regev,et al.  Asymptotic values for degrees associated with strips of young diagrams , 1981 .

[6]  Zvezdelina Stankova Classification of Forbidden Subsequences of Length 4 , 1996, Eur. J. Comb..

[7]  Ira M. Gessel,et al.  Lattice Walks in Zd and Permutations with No Long Ascending Subsequences , 1997, Electron. J. Comb..

[8]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[9]  Brendan D. McKay,et al.  Maximising the Permanent of (0, 1)-Matrices and the Number of Extensions of Latin Rectangles , 1998, Electron. J. Comb..

[10]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[11]  Toufik Mansour,et al.  Enumerating Permutations Avoiding A Pair Of Babson-Steingrimsson Patterns , 2005, Ars Comb..

[12]  Olivier Guibert Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .

[13]  Dominique Gouyou-Beauchamps,et al.  Standard Young Tableaux of Height 4 and 5 , 1989, Eur. J. Comb..

[14]  Julian West,et al.  A New Class of Wilf-Equivalent Permutations , 2001 .

[15]  G. Viennot,et al.  Une forme geometrique de la correspondance de Robinson-Schensted , 1977 .

[16]  Olivier Guibert,et al.  Vexillary Involutions are Enumerated by Motzkin Numbers , 2001 .

[17]  Julian West,et al.  The Permutations 123p4…pm and 321p4…pm are Wilf-Equivalent , 2000, Graphs Comb..

[18]  Sergey Kitaev,et al.  A SURVEY ON CERTAIN PATTERN PROBLEMS , 2004 .

[19]  Gérard P. Huet,et al.  Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems , 1980, J. ACM.

[20]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[21]  Aaron D. Jaggard Prefix Exchanging and Pattern Avoidance by Involutions , 2002, Electron. J. Comb..

[22]  Eric Babson,et al.  Generalized permutation patterns and a classification of the Mahonian statistics , 2000 .

[23]  Gerard Huet,et al.  Conflunt reductions: Abstract properties and applications to term rewriting systems , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[24]  Alberto Del Lungo,et al.  Some permutations with forbidden subsequences and their inversion number , 2001, Discret. Math..

[25]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..