Optimization of the active contour snaxels for human gait tracking

Tracking an object is one the most considerable and applicable field of the machine vision. In this field, tracking a non-rigid object like human are so difficult because of variable shape of this kind of object and the self-occlusion that normally between different parts of the human body occurs.

[1]  Hans-Hellmut Nagel,et al.  Tracking Persons in Monocular Image Sequences , 1999, Comput. Vis. Image Underst..

[2]  David C. Hogg,et al.  Learning Variable-Length Markov Models of Behavior , 2001, Comput. Vis. Image Underst..

[3]  David C. Hogg,et al.  Learning Deformable Models for Tracking the Human Body , 1997 .

[4]  Natan Peterfreund,et al.  Robust Tracking of Position and Velocity With Kalman Snakes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Tieniu Tan,et al.  A survey on visual surveillance of object motion and behaviors , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[6]  K. Rohr Towards model-based recognition of human movements in image sequences , 1994 .

[7]  A. David Marshall,et al.  A Hierarchical Model of Dynamics for Tracking People with a Single Video Camera , 2000, BMVC.

[8]  Tomaso A. Poggio,et al.  Example-Based Object Detection in Images by Components , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Hong Yan,et al.  A faster converging snake algorithm to locate object boundaries , 2006, IEEE Transactions on Image Processing.

[10]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[11]  Michael J. Black,et al.  Cardboard people: a parameterized model of articulated image motion , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[12]  Edward H. Adelson,et al.  Analyzing and recognizing walking figures in XYT , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[13]  Michael Isard,et al.  Contour Tracking by Stochastic Propagation of Conditional Density , 1996, ECCV.

[14]  Say Wei Foo,et al.  Dynamic directional gradient vector flow for snakes , 2006, IEEE Transactions on Image Processing.

[15]  Ying Wu,et al.  A co-inference approach to robust visual tracking , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Pascal Fua,et al.  Articulated Soft Objects for Video-based Body Modeling , 2001, ICCV.

[17]  George Loizou,et al.  Computer vision and pattern recognition , 2007, Int. J. Comput. Math..

[18]  R. Plankers,et al.  Articulated soft objects for video-based body modeling , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.