Magnetite Crystal Orientation in Magnetosome Chains

One‐dimensional magnetic nanostructures have magnetic properties superior to non‐organized materials due to strong uniaxial shape anisotropy. Magnetosome chains in magnetotactic bacteria represent a biological paradigm of such magnet, where magnetite crystals synthesized in organelles called magnetosomes are arranged into linear chains. Two‐dimensional synchrotron X‐ray diffraction (XRD) is applied to cells of magnetotactic bacteria that are pre‐aligned with a magnetic field to determine the crystallographic orientation of magnetosomes relative to the chain axis. The obtained pole figure patterns reveal a [111] fiber texture along the chain direction for magnetospirilla strains MSR‐1 and AMB‐1, whereas a [100] fiber texture is measured for Desulfovibrio magneticus strain RS‐1. The [100] axis appears energetically unfavorable because it represents a magnetic hard axis in magnetite, but can be turned into an effective easy axis by particle elongation along [100] for aspect ratios higher than 1.25, consistent with aspect ratios in RS‐1 magnetosomes determined earlier. The pronounced fiber textures can be explained either by a strain‐specific biological control on crystal orientation at the chain level or by physical alignment effects due to intra‐chain magnetic interactions. In this case, biological control of the axis of elongation would be sufficient to influence the crystallographic texture of the magnetosome chain.

[1]  R. Egli VARIFORC: An optimized protocol for calculating non-regular first-order reversal curve (FORC) diagrams , 2013 .

[2]  W. Williams,et al.  A strong angular dependence of magnetic properties of magnetosome chains: Implications for rock magnetism and paleomagnetism , 2013 .

[3]  D. Bazylinski,et al.  Ecology, Diversity, and Evolution of Magnetotactic Bacteria , 2013, Microbiology and Molecular Reviews.

[4]  S. Mallapragada,et al.  Novel magnetic nanomaterials inspired by magnetotactic bacteria: Topical review , 2013 .

[5]  M. Robertson Nature's Nanostructures , 2013 .

[6]  D. Faivre,et al.  Interplay of Magnetic Interactions and Active Movements in the Formation of Magnetosome Chains , 2012, PloS one.

[7]  D. Schüler,et al.  Magnetosome chains are recruited to cellular division sites and split by asymmetric septation , 2011, Molecular microbiology.

[8]  D. Faivre,et al.  Evolution of magnetic anisotropy and thermal stability during nanocrystal-chain growth , 2011 .

[9]  François Guyot,et al.  Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. , 2011, ACS nano.

[10]  M. Winklhofer,et al.  Simulation of ferromagnetic resonance spectra of linear chains of magnetite nanocrystals , 2011 .

[11]  Qi Lu,et al.  Memory Effect in Magnetic Nanowire Arrays , 2011, Advanced materials.

[12]  L. Fuentes-Cobas,et al.  The software package ANAELU for X-ray diffraction analysis using two-dimensional patterns , 2011 .

[13]  Jiayin Yuan,et al.  One-dimensional magnetic inorganic-organic hybrid nanomaterials. , 2011, Chemical Society reviews.

[14]  P. Fratzl,et al.  Structural purity of magnetite nanoparticles in magnetotactic bacteria , 2011, Journal of The Royal Society Interface.

[15]  D. Faivre,et al.  Development of cellular magnetic dipoles in magnetotactic bacteria. , 2010, Biophysical journal.

[16]  D. Schüler,et al.  Loss of the actin‐like protein MamK has pleiotropic effects on magnetosome formation and chain assembly in Magnetospirillum gryphiswaldense , 2010, Molecular microbiology.

[17]  K. Downing,et al.  Desulfovibrio magneticus RS-1 contains an iron- and phosphorus-rich organelle distinct from its bullet-shaped magnetosomes , 2010, Proceedings of the National Academy of Sciences.

[18]  R. Che,et al.  Biomineralization, crystallography and magnetic properties of bullet-shaped magnetite magnetosomes in giant rod magnetotactic bacteria , 2010 .

[19]  M. Pileni,et al.  Assemblies of aligned magnetotactic bacteria and extracted magnetosomes: what is the main factor responsible for the magnetic anisotropy? , 2009, ACS nano.

[20]  C. Carvallo,et al.  Formation of magnetite in Magnetospirillum gryphiswaldense studied with FORC diagrams , 2009 .

[21]  Damien Faivre,et al.  Magnetotactic bacteria and magnetosomes. , 2008, Chemical reviews.

[22]  P. Weidler,et al.  Ferromagnetic resonance and magnetic characteristics of intact magnetosome chains in Magnetospirillum gryphiswaldense , 2008 .

[23]  D. Schüler,et al.  Expression of Green Fluorescent Protein Fused to Magnetosome Proteins in Microaerophilic Magnetotactic Bacteria , 2008, Applied and Environmental Microbiology.

[24]  P. Buseck,et al.  Magnetite (Fe 3 O 4 ) and Greigite (Fe 3 S 4 ) Crystals in Multicellular Magnetotactic Prokaryotes , 2007 .

[25]  P. Fratzl,et al.  A new experimental station for simultaneous X-ray microbeam scanning for small- and wide-angle scattering and fluorescence at BESSY II , 2006 .

[26]  R. Frankel,et al.  Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1 , 2006 .

[27]  Damien Faivre,et al.  An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria , 2006, Nature.

[28]  Grant J. Jensen,et al.  Magnetosomes Are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK , 2006, Science.

[29]  R. Frankel,et al.  Habits of Magnetosome Crystals in Coccoid Magnetotactic Bacteria , 2005, Applied and Environmental Microbiology.

[30]  M. Winklhofer,et al.  Pulsed-field-remanence measurements on individual magnetotactic bacteria , 2002 .

[31]  P A Midgley,et al.  Magnetite morphology and life on Mars , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. P. Taylor,et al.  Structural and morphological anomalies in magnetosomes: possible biogenic origin for magnetite in ALH84001 , 2001, Journal of microscopy.

[33]  Frankel,et al.  Magnetic microstructure of magnetotactic bacteria by electron holography , 1998, Science.

[34]  M. Winklhofer,et al.  Elastic stability of chains of magnetosomes in magnetotactic bacteria , 1997, European Biophysics Journal.

[35]  D. Schüler,et al.  A simple light scattering method to assay magnetism in Magnetospirillum gryphiswaldense , 1995 .

[36]  Toshifumi Sakaguchi,et al.  Magnetite formation by a sulphate-reducing bacterium , 1993, Nature.

[37]  R. Frankel,et al.  Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[38]  D. Schüler,et al.  The Genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and Transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov. , 1991 .

[39]  Toshifumi Sakaguchi,et al.  Magnetite formation by a magnetic bacterium capable of growing aerobically , 1991, Applied Microbiology and Biotechnology.

[40]  R S Wolfe,et al.  Magnetite in Freshwater Magnetotactic Bacteria , 1979, Science.

[41]  Tanja Neumann,et al.  Elements Of X Ray Diffraction , 2016 .