Resolution optimization with irregularly sampled Fourier data
暂无分享,去创建一个
[1] Volker Rasche,et al. Resampling of data between arbitrary grids using convolution interpolation , 1999, IEEE Transactions on Medical Imaging.
[2] Lee C. Potter,et al. Resolution and sidelobe structure analysis for RF tomography , 2011, 2011 IEEE RadarCon (RADAR).
[3] J. Lakey,et al. Duration and Bandwidth Limiting , 2012 .
[4] Tim Palmer,et al. The real butterfly effect , 2014 .
[5] Yan Wu,et al. Prediction of Band-Limited Signals from Past Samples and Applications to Speech Coding , 2001 .
[6] F. Natterer. The Mathematics of Computerized Tomography , 1986 .
[7] James G. Berryman,et al. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion. Interdisciplinary Applied Mathematics, Vol 13 , 2001 .
[8] Gary H. Glover,et al. A generalization of the two-dimensional prolate spheroidal wave function method for nonrectilinear MRI data acquisition methods , 2006, IEEE Transactions on Image Processing.
[9] F. Grünbaum. Eigenvectors of a Toeplitz Matrix: Discrete Version of the Prolate Spheroidal Wave Functions , 1981 .
[10] Gene H. Golub,et al. Matrix computations , 1983 .
[11] Hossein Sedarat,et al. On the optimality of the gridding reconstruction algorithm , 2000, IEEE Transactions on Medical Imaging.
[12] D. Slepian. Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.
[13] P. Boesiger,et al. Advances in sensitivity encoding with arbitrary k‐space trajectories , 2001, Magnetic resonance in medicine.
[14] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[15] D. van Ormondt,et al. Magnetic Resonance Image Reconstruction from Nonuniformly Sampled k -space Data , 2001 .
[16] A. Macovski,et al. Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.
[17] A. Zee,et al. Spectra of euclidean random matrices , 1999 .
[18] Nathan A. Goodman,et al. Resolution and synthetic aperture characterization of sparse radar arrays , 2003 .
[19] Mehrdad Soumekh. Reconstruction and sampling constraints for spiral data [image processing] , 1989, IEEE Trans. Acoust. Speech Signal Process..
[20] Steven Kay,et al. Fundamentals Of Statistical Signal Processing , 2001 .
[21] Mathews Jacob,et al. Non-Iterative Regularized reconstruction Algorithm for Non-CartesiAn MRI: NIRVANA. , 2011, Magnetic resonance imaging.
[22] R. Hoge,et al. Density compensation functions for spiral MRI , 1997, Magnetic resonance in medicine.
[23] Charles L. Epstein,et al. Introduction to the mathematics of medical imaging , 2003 .
[24] M. Cheney,et al. Imaging From Sparse Measurements , 2010 .
[25] O. Dahlsten,et al. Entanglement typicality , 2014, 1404.1444.
[26] B. Borden,et al. Fundamentals of Radar Imaging , 2009 .
[27] Vladimir Rokhlin,et al. Fast Fourier Transforms for Nonequispaced Data , 1993, SIAM J. Sci. Comput..
[28] Bob S. Hu,et al. Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.