Complex models and computational methods in statistics

A new unsupervised classification technique through nonlinear non parametric mixed effects models.- Estimation approaches for the apparent diffusion coefficient in Rice-distributed MR signals.- Longitudinal patterns of financial product ownership: a latent growth mixture approach.- Computationally efficient inference procedures for vast dimensional realized covariance models.- A GPU software library for likelihood-based inference of environmental models with large datasets.- Theoretical Regression Trees: a tool for multiple structural-change models analysis.- Some contributions to the theory of conditional Gibbs partitions.- Estimation of traffic matrices for LRD traffic.- A Newton's method for benchmarking time series.- Spatial smoothing for data distributed over non-planar domains.- Volatility swings in the US financial markets.- Semicontinuous regression models with skew distributions.- Classification of multivariate linear-circular data with nonignorable missing values.- Multidimensional connected set detection in clustering based on nonparametric density estimation.- Using integrated nested Laplace approximations for modelling spatial healthcare utilization.- Supply function prediction in electricity auctions.- A hierarchical bayesian model for RNA-Seq data.

[1]  A. Lijoi,et al.  On the stick-breaking representation of normalized inverse Gaussian priors , 2012 .

[2]  Gordon K. Smyth,et al.  Testing significance relative to a fold-change threshold is a TREAT , 2009, Bioinform..

[3]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[4]  J. Wakefield,et al.  Bayesian inference for generalized linear mixed models. , 2010, Biostatistics.

[5]  James O. Ramsay,et al.  Spatial spline regression models , 2013 .

[6]  Michela Cameletti,et al.  Comparing spatio‐temporal models for particulate matter in Piemonte , 2011 .

[7]  C. Gouriéroux,et al.  The Wishart Autoregressive Process of Multivariate Stochastic Volatility , 2009 .

[8]  Erricos John Kontoghiorghes,et al.  Handbook of Parallel Computing and Statistics , 2005 .

[9]  A. Harvey,et al.  Forecasting Hourly Electricity Demand Using Time-Varying Splines , 1993 .

[10]  Zhijin Wu,et al.  Empirical bayes analysis of sequencing-based transcriptional profiling without replicates , 2010, BMC Bioinformatics.

[11]  Azer Bestavros,et al.  Self-similarity in World Wide Web traffic: evidence and possible causes , 1996, SIGMETRICS '96.

[12]  L. Bauwens,et al.  Dynamic conditional correlation models for realized covariance matrices , 2012 .

[13]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[14]  Ali Hortaçsu,et al.  Understanding strategic bidding in multi‐unit auctions: a case study of the Texas electricity spot market , 2008 .

[15]  Brian D. M. Tom,et al.  Bias in 2-part mixed models for longitudinal semicontinuous data , 2009, Biostatistics.

[16]  J. Ramsay When the data are functions , 1982 .

[17]  Luigi Landini,et al.  Advanced Image Processing in Magnetic Resonance Imaging , 2005 .

[18]  Ayse Pinar Saygin,et al.  Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data , 2006, NeuroImage.

[19]  Michael A. West,et al.  Bayesian Inference on Network Traffic Using Link Count Data , 1998 .

[20]  T. Gneiting Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .

[21]  Lawrence R. Ernst BUREAU OF THE CENSUS STATISTICAL RESEARCH DIVISION , 1993 .

[22]  Jan Sijbers,et al.  Maximum-likelihood estimation of Rician distribution parameters , 1998, IEEE Transactions on Medical Imaging.

[23]  Alessandro Fasso,et al.  Maximum likelihood estimation of the dynamic coregionalization model with heterotopic data , 2011 .

[24]  Leonhard Held,et al.  Spatio‐temporal disease mapping using INLA , 2011 .

[25]  L. Bauwens,et al.  Multivariate GARCH Models: A Survey , 2003 .

[26]  W. Huber,et al.  Detecting differential usage of exons from RNA-seq data , 2012, Genome research.

[27]  D Bear,et al.  Principles of telecommunication-traffic engineering , 1980 .

[28]  Christian P. Robert,et al.  Statistics for Spatio-Temporal Data , 2014 .

[29]  L. Held,et al.  Sensitivity analysis in Bayesian generalized linear mixed models for binary data , 2011 .

[30]  Sandrine Vaton,et al.  Iterative Bayesian estimation of network traffic matrices in the case of bursty flows , 2002, IMW '02.

[31]  K. Mardia,et al.  Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data , 2007, Biometrics.

[32]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[33]  J. Tobin Estimation of Relationships for Limited Dependent Variables , 1958 .

[34]  I. Juva,et al.  TRAFFIC MATRIX ESTIMATION IN THE INTERNET: MEASUREMENT ANALYSIS, ESTIMATION METHODS AND APPLICATIONS , 2008 .

[35]  Annibale Biggeri,et al.  A hierarchical Bayesian model for space-time variation of disease risk , 2001 .

[36]  Maurizio Naldi,et al.  Blind maximum likelihood estimation of traffic matrices under long-range dependent traffic , 2010, Comput. Networks.

[37]  Arnaud Doucet,et al.  On the Utility of Graphics Cards to Perform Massively Parallel Simulation of Advanced Monte Carlo Methods , 2009, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[38]  Stirling's approximations for exchangeable Gibbs weights , 2012, 1206.6812.

[39]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[40]  Samuli Aalto,et al.  Effects of Spatial Aggregation on the Characteristics of Origin-Destination Pair Traffic in Funet , 2007, NEW2AN.

[41]  A. Ranaldo,et al.  Forecasting Realized (Co)Variances with a Block Structure Wishart Autoregressive Model , 2008 .

[42]  PL Conti,et al.  Estimation of traffic matrices in the presence of long memory traffic , 2012 .

[43]  Livia De Giovanni,et al.  Confidence intervals for the long memory parameter based on wavelets and resampling , 2008 .

[44]  N. Shephard,et al.  Designing realised kernels to measure the ex-post variation of equity prices in the presence of noise , 2006 .

[45]  F. J. Anscombe,et al.  Sampling theory of the negative binomial and logarithmic series distributions. , 1950, Biometrika.

[46]  P. Bermolen,et al.  Search for optimality in traffic matrix estimation: a rational approach by Cramer-Rao lower bounds , 2006, 2006 2nd Conference on Next Generation Internet Design and Engineering, 2006. NGI '06..

[47]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[48]  Joseph L Schafer,et al.  A Two-Part Random-Effects Model for Semicontinuous Longitudinal Data , 2001 .

[49]  Maria-Pia Victoria-Feser,et al.  Zero-Inflated Truncated Generalized Pareto Distribution for the Analysis of Radio Audience Data , 2010, 1101.1163.

[50]  R. Engle,et al.  Volatility Spillovers in East Asian Financial Markets: A Mem-Based Approach , 2012, Review of Economics and Statistics.

[51]  Cliburn Chan,et al.  Understanding GPU Programming for Statistical Computation: Studies in Massively Parallel Massive Mixtures , 2010, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[52]  J. G. Cragg Some Statistical Models for Limited Dependent Variables with Application to the Demand for Durable Goods , 1971 .

[53]  Leonhard Held,et al.  Posterior and Cross-validatory Predictive Checks: A Comparison of MCMC and INLA , 2010 .

[54]  J. Pitman Exchangeable and partially exchangeable random partitions , 1995 .

[55]  Simon P. Wilson,et al.  Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models , 2004, Stat. Comput..

[56]  I. Juva,et al.  Traffic characterization for traffic engineering purposes: analysis of Funet data , 2005, Next Generation Internet Networks, 2005.

[57]  J. Vanhatalo,et al.  Approximate inference for disease mapping with sparse Gaussian processes , 2010, Statistics in medicine.

[58]  Hans D. Mittelmann,et al.  A server for automated performance analysis of benchmarking data , 2006, Optim. Methods Softw..

[59]  P. Deb Finite Mixture Models , 2008 .

[60]  Eric R. Ziegel,et al.  Multivariate Statistical Modelling Based on Generalized Linear Models , 2002, Technometrics.

[61]  A. Azzalini The Skew‐normal Distribution and Related Multivariate Families * , 2005 .

[62]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[63]  L Bernardinelli,et al.  Bayesian estimates of disease maps: how important are priors? , 1995, Statistics in medicine.

[64]  Alan Agresti,et al.  Modeling Nonnegative Data with Clumping at Zero: A Survey , 2002 .

[65]  H. Rue,et al.  On the Second‐Order Random Walk Model for Irregular Locations , 2008 .

[66]  Håvard Rue,et al.  Norges Teknisk-naturvitenskapelige Universitet Implementing Approximate Bayesian Inference Using Integrated Nested Laplace Approximation: a Manual for the Inla Program Implementing Approximate Bayesian Inference Using Integrated Nested Laplace Approximation: a Manual for the Inla Program , 2022 .

[67]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[68]  Joseph G. Ibrahim,et al.  Missing covariates in generalized linear models when the missing data mechanism is non‐ignorable , 1999 .

[69]  Clive W. J. Granger,et al.  Short-run forecasts of electricity loads and peaks , 2001 .

[70]  S. Walker,et al.  Bayesian nonparametric estimators derived from conditional Gibbs structures , 2008, 0808.2863.

[71]  Diane Lambert,et al.  Zero-inflacted Poisson regression, with an application to defects in manufacturing , 1992 .

[72]  Martyn Plummer,et al.  JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling , 2003 .

[73]  Frank T. Denton,et al.  Adjustment of Monthly or Quarterly Series to Annual Totals: An Approach Based on Quadratic Minimization , 1971 .

[74]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[75]  J. Pitman,et al.  Characterizations of exchangeable partitions and random discrete distributions by deletion properties , 2009, 0909.3642.

[76]  Vincent Kanade,et al.  Clustering Algorithms , 2021, Wireless RF Energy Transfer in the Massive IoT Era.

[77]  R. Engle Dynamic Conditional Correlation : A Simple Class of Multivariate GARCH Models , 2000 .

[78]  Michael D Lee,et al.  BayesSDT: Software for Bayesian inference with signal detection theory , 2008, Behavior research methods.

[79]  Christophe Biernacki,et al.  Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models , 2003, Comput. Stat. Data Anal..

[80]  A. Cerquetti On a Gibbs characterization of normalized generalized Gamma processes , 2007, 0707.3408.

[81]  J. Pitman Poisson-Kingman partitions , 2002, math/0210396.

[82]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[83]  Mikael Johansson,et al.  Traffic matrix estimation on a large IP backbone: a comparison on real data , 2004, IMC '04.

[84]  Luigi Cavaleri,et al.  Wind and wave predictions in the Adriatic Sea , 2009 .

[85]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[86]  Maqc Consortium The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements , 2006, Nature Biotechnology.

[87]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[88]  B. Yu,et al.  Time-varying network tomography: router link data , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[89]  S. Koopman,et al.  Spline Smoothing Over Difficult Regions , 2008 .

[90]  A. Conesa,et al.  Differential expression in RNA-seq: a matter of depth. , 2011, Genome research.

[91]  Kanti V. Mardia,et al.  A multivariate von mises distribution with applications to bioinformatics , 2008 .

[92]  B. Schrödle A primer on disease mapping and ecological regression using INLA , 2011 .

[93]  J. Mullahy Specification and testing of some modified count data models , 1986 .

[94]  S. Walker,et al.  Investigating nonparametric priors with Gibbs structure , 2008 .

[95]  M. Stephens,et al.  RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. , 2008, Genome research.

[96]  Pierre Baldi,et al.  A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes , 2001, Bioinform..

[97]  Nicola Torelli,et al.  Clustering via nonparametric density estimation , 2007, Stat. Comput..

[98]  Bjarne Stroustrup,et al.  C++ Programming Language , 1986, IEEE Softw..

[99]  Lynette A. Hunt,et al.  Mixture model clustering for mixed data with missing information , 2003, Comput. Stat. Data Anal..

[100]  Han Lin Shang,et al.  Forecasting functional time series , 2009 .

[101]  J. Pitman Some developments of the Blackwell-MacQueen urn scheme , 1996 .

[102]  The Markov Switching Asymmetric Multiplicative Error Model , 2012 .

[103]  M. Bulmer On Fitting the Poisson Lognormal Distribution to Species-Abundance Data , 1974 .

[104]  Paul S Albert,et al.  Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data , 2007, Statistical methods in medical research.

[105]  Robert Nowak,et al.  Network Tomography: Recent Developments , 2004 .

[106]  Xuegong Zhang,et al.  DEGseq: an R package for identifying differentially expressed genes from RNA-seq data , 2010, Bioinform..

[107]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[108]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[109]  L H Moulton,et al.  A mixed gamma model for regression analyses of quantitative assay data. , 1996, Vaccine.

[110]  Mark D. Robinson,et al.  Moderated statistical tests for assessing differences in tag abundance , 2007, Bioinform..

[111]  Costas Meghir,et al.  BIVARIATE ALTERNATIVES TO THE TOBIT MODEL , 1987 .

[112]  Lancelot F. James,et al.  Gibbs Partitions (EPPF's) Derived From a Stable Subordinator are Fox H and Meijer G Transforms , 2007, 0708.0619.

[113]  Nelson Luis Saldanha da Fonseca,et al.  On the equivalent bandwidth of self-similar sources , 2000, TOMC.

[114]  Jie Cheng,et al.  Programming Massively Parallel Processors. A Hands-on Approach , 2010, Scalable Comput. Pract. Exp..

[115]  J. Lawless Negative binomial and mixed Poisson regression , 1987 .

[116]  Salvatore Ingrassia,et al.  Degeneracy of the EM algorithm for the MLE of multivariate Gaussian mixtures and dynamic constraints , 2011, Comput. Stat. Data Anal..

[117]  C M Kendziorski,et al.  On parametric empirical Bayes methods for comparing multiple groups using replicated gene expression profiles , 2003, Statistics in medicine.

[118]  Vasyl Golosnoy,et al.  The Conditional Autoregressive Wishart Model for Multivariate Stock Market Volatility , 2010 .

[119]  Jakub Kastl Discrete Bids and Empirical Inference in Divisible Good Auctions , 2011 .

[120]  Ramsés H. Mena,et al.  Controlling the reinforcement in Bayesian non‐parametric mixture models , 2007 .

[121]  R. Engle,et al.  Multivariate Simultaneous Generalized ARCH , 1995, Econometric Theory.

[122]  A. Veneziani,et al.  A Case Study in Exploratory Functional Data Analysis: Geometrical Features of the Internal Carotid Artery , 2009 .

[123]  Ingrid Lönnstedt Replicated microarray data , 2001 .

[124]  H. Tong,et al.  ON ESTIMATING THRESHOLDS IN AUTOREGRESSIVE MODELS , 1986 .

[125]  J. Ibrahim,et al.  Bayesian Models for Gene Expression With DNA Microarray Data , 2002 .

[126]  A. Lijoi,et al.  Asymptotics for a Bayesian nonparametric estimator of species variety , 2012, 1211.5422.

[127]  Ramsés H. Mena,et al.  Bayesian Nonparametric Estimation of the Probability of Discovering New Species , 2007 .

[128]  M. Gerstein,et al.  RNA-Seq: a revolutionary tool for transcriptomics , 2009, Nature Reviews Genetics.

[129]  R. Andersen,et al.  Exploring dimensions of access to medical care. , 1983, Health services research.

[130]  A. Cuevas,et al.  Cluster analysis: a further approach based on density estimation , 2001 .

[131]  Ramsés H. Mena,et al.  Hierarchical Mixture Modeling With Normalized Inverse-Gaussian Priors , 2005 .

[132]  Luca Antiga,et al.  An Integrated Statistical Investigation of Internal Carotid Arteries of Patients Affected by Cerebral Aneurysms , 2012 .

[133]  A. Raftery,et al.  Model-based Gaussian and non-Gaussian clustering , 1993 .

[134]  G. N. Fouskitakis,et al.  On the estimation of long-memory time series models , 1997, 1997 European Control Conference (ECC).

[135]  David A. Steinman,et al.  A Framework for Geometric Analysis of Vascular Structures: Application to Cerebral Aneurysms , 2009, IEEE Transactions on Medical Imaging.

[136]  N. Reid,et al.  AN OVERVIEW OF COMPOSITE LIKELIHOOD METHODS , 2011 .

[137]  Ron Kikinis,et al.  Nondistorting flattening maps and the 3-D visualization of colon CT images , 2000, IEEE Transactions on Medical Imaging.

[138]  James L. Powell,et al.  Estimation of semiparametric models , 1994 .

[139]  M. Healy,et al.  Multivariate Normal Plotting , 1968 .

[140]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[141]  A. Cerquetti A note on Bayesian nonparametric priors derived from exponentially tilted Poisson–Kingman models , 2007, math/0703552.

[142]  Yuzo Hosoya,et al.  A limit theory for long-range dependence and statistical inference on related models , 1997 .

[143]  J. Pitman,et al.  Exchangeable Gibbs partitions and Stirling triangles , 2004, math/0412494.

[144]  Neil Shephard,et al.  Multivariate High-Frequency-Based Volatility (HEAVY) Models , 2012 .

[145]  J. Kingman The Representation of Partition Structures , 1978 .

[146]  Hans-Georg Müller,et al.  Functional Data Analysis , 2016 .

[147]  Zacharias Psaradakis,et al.  ON THE DETERMINATION OF THE NUMBER OF REGIMES IN MARKOV‐SWITCHING AUTOREGRESSIVE MODELS , 2002 .

[148]  L. C. Hsu,et al.  A Unified Approach to Generalized Stirling Numbers , 1998 .

[149]  A. Molli'e Bayesian mapping of disease , 1996 .

[150]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[151]  R. Bhattacharya,et al.  Nonparametric statistics on manifolds with applications to shape spaces , 2008, 0805.3282.

[152]  L. Pieroni,et al.  A double-hurdle approach to modelling tobacco consumption in Italy , 2008 .

[153]  Takeo Ishigaki,et al.  Differentiation of noncancerous tissue and cancer lesions by apparent diffusion coefficient values in transition and peripheral zones of the prostate , 2005, Journal of magnetic resonance imaging : JMRI.

[154]  Andrew M. Jones A double‐hurdle model of cigarette consumption , 1989 .

[155]  Ron Kikinis,et al.  On the Laplace-Beltrami operator and brain surface flattening , 1999, IEEE Transactions on Medical Imaging.

[156]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[157]  Jorma T. Virtamo,et al.  Quick Traffic Matrix Estimation Based on Link Count Covariances , 2006, 2006 IEEE International Conference on Communications.

[158]  Davide Risso,et al.  A novel approach to the clustering of microarray data via nonparametric density estimation , 2011, BMC Bioinformatics.

[159]  R. Engle,et al.  A Multiple Indicators Model for Volatility Using Intra-Daily Data , 2003 .

[160]  F. Lagona,et al.  Model-based clustering of multivariate skew data with circular components and missing values , 2012 .

[161]  A. Cerquetti A Generalized Sequential Construction of Exchangeable Gibbs Partitions with Application. , 2009 .

[162]  R. Fisher,et al.  The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population , 1943 .

[163]  Alan J. Izenman,et al.  Multivariate Reduced-Rank Regression , 2011, International Encyclopedia of Statistical Science.

[164]  M. Robinson,et al.  Small-sample estimation of negative binomial dispersion, with applications to SAGE data. , 2007, Biostatistics.

[165]  Moo K. Chung,et al.  Cortical thickness analysis in autism with heat kernel smoothing , 2005, NeuroImage.

[166]  Peter Müller,et al.  On Differential Gene Expression Using RNA-Seq Data , 2011, Cancer informatics.

[167]  Gordon K Smyth,et al.  Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments , 2004, Statistical applications in genetics and molecular biology.

[168]  Tommaso Di Fonzo,et al.  Benchmarking and Movement Preservation: Evidences from Real-Life and Simulated Series , 2013 .

[169]  L. Fahrmeir,et al.  Bayesian inference for generalized additive mixed models based on Markov random field priors , 2001 .

[170]  Nour Meddahi,et al.  Bootstrapping Realized Multivariate Volatility Measures , 2009 .

[171]  E. Otranto Classification of Volatility in Presence of Changes in Model Parameters , 2011 .

[172]  M. Forina,et al.  Multivariate data analysis as a discriminating method of the origin of wines , 2015 .

[173]  Estela Bee Dagum,et al.  Benchmarking, Temporal Distribution, and Reconciliation Methods for Time Series , 2006 .

[174]  Shaowen Wang,et al.  Parallelizing MCMC for Bayesian spatiotemporal geostatistical models , 2007, Stat. Comput..

[175]  C. Morris,et al.  A Comparison of Alternative Models for the Demand for Medical Care , 1983 .

[176]  Maurizio Naldi,et al.  Blind Maximum-Likelihood Estimation of Traffic Matrices in Long Range Dependent Traffic , 2009, FITraMEn.

[177]  Modelling bounded health scores with censored skew‐normal distributions , 2011, Statistics in medicine.

[178]  David E. Booth,et al.  Analysis of Incomplete Multivariate Data , 2000, Technometrics.

[179]  Francesco Lagona,et al.  A Latent-Class Model for Clustering Incomplete Linear and Circular Data in Marine Studies , 2021 .

[180]  D. Bosq Linear Processes in Function Spaces: Theory And Applications , 2000 .

[181]  Ramsés H. Mena,et al.  Bayesian non‐parametric inference for species variety with a two‐parameter Poisson–Dirichlet process prior , 2009 .

[182]  Rob J. Hyndman,et al.  Robust forecasting of mortality and fertility rates: A functional data approach , 2007, Comput. Stat. Data Anal..

[183]  A. Azzalini,et al.  Statistical applications of the multivariate skew normal distribution , 2009, 0911.2093.

[184]  Roderick J. A. Little,et al.  Modeling the Drop-Out Mechanism in Repeated-Measures Studies , 1995 .

[185]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[186]  Lancelot F. James,et al.  Posterior Analysis for Normalized Random Measures with Independent Increments , 2009 .

[187]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[188]  By W. R. GILKSt,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 2010 .

[189]  Sandrine Dudoit,et al.  Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments , 2010, BMC Bioinformatics.

[190]  Strategic bidding in vertically integrated power markets with an application to the Italian electricity auctions , 2012 .

[191]  Giampiero M. Gallo,et al.  Volatility spillovers, interdependence and comovements: A Markov Switching approach , 2008, Comput. Stat. Data Anal..

[192]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[193]  H. Rue,et al.  Approximate Bayesian inference for hierarchical Gaussian Markov random field models , 2007 .

[194]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[195]  F. Lagona,et al.  Maximum likelihood estimation of bivariate circular hidden Markov models from incomplete data , 2013 .

[196]  Walter Willinger,et al.  Self-similarity and heavy tails: structural modeling of network traffic , 1998 .

[197]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[198]  H. Chai,et al.  Use of log‐skew‐normal distribution in analysis of continuous data with a discrete component at zero , 2008, Statistics in medicine.

[199]  Adriaan Bloem,et al.  Quarterly National Accounts Manual: Concepts, Data Sources, and Compilation , 2001 .

[200]  Thomas J. Hardcastle,et al.  baySeq: Empirical Bayesian methods for identifying differential expression in sequence count data , 2010, BMC Bioinformatics.

[201]  Y. Vardi,et al.  Network Tomography: Estimating Source-Destination Traffic Intensities from Link Data , 1996 .