Maximally Stable Local Description for Scale Selection
暂无分享,去创建一个
[1] Andrew Zisserman,et al. Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.
[2] Narendra Ahuja,et al. A multiscale region detector , 1989, Comput. Vis. Graph. Image Process..
[3] Christopher G. Harris,et al. A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.
[4] Jiri Matas,et al. Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..
[5] Andrew Zisserman,et al. An Affine Invariant Salient Region Detector , 2004, ECCV.
[6] Cordelia Schmid,et al. A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..
[7] C. Schmid,et al. Scale-invariant shape features for recognition of object categories , 2004, CVPR 2004.
[8] Tony Lindeberg,et al. Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.
[9] Peter Auer,et al. Weak Hypotheses and Boosting for Generic Object Detection and Recognition , 2004, ECCV.
[10] Tony Lindeberg,et al. Shape-Adapted Smoothing in Estimation of 3-D Depth Cues from Affine Distortions of Local 2-D Brightness Structure , 1994, ECCV.
[11] Cordelia Schmid,et al. Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.
[12] Cordelia Schmid,et al. A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.
[14] Gabriela Csurka,et al. Visual categorization with bags of keypoints , 2002, eccv 2004.
[15] Pietro Perona,et al. Object class recognition by unsupervised scale-invariant learning , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..
[16] Adam Baumberg,et al. Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[17] G LoweDavid,et al. Distinctive Image Features from Scale-Invariant Keypoints , 2004 .
[18] Mario Fritz,et al. On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.