Transition from reciprocal-space to real-space surface science—advent of the scanning tunneling microscope

The emergence of surface science as an identifiable field of research depended to a large measure on structural determinations, which were dominated in the early days by diffraction methods. The scanning tunneling microscope enabled a transition to real-space imaging, making surface science visual and thus much more accessible. The evolution of surface structural determination is roughly traced from its inception to the present, where both diffraction and scanning tunneling microscopy have become commodities: Must haves for the serious surface scientist.

[1]  E. Brüche Elektronenmikroskopische Abbildung mit lichtelektrischen Elektronen , 1933 .

[2]  W. Ehrenberg LXXXIII. A new method of investigating the diffraction of slow electrons by crystals , 1934 .

[3]  A. Recknagel Theorie des elektrischen Elektronenmikroskops für Selbststrahler , 1941 .

[4]  A. Recknagel Das Auflösungsvermögen des Elektronenmikroskops für Selbststrahler , 1943 .

[5]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[6]  H. E. Farnsworth,et al.  Structure and Adsorption Characteristics of Clean Surfaces of Germanium and Silicon , 1959 .

[7]  M. Whelan,et al.  A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects , 1960, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[8]  L. Germer,et al.  Oxygen on Nickel , 1960 .

[9]  L. Germer,et al.  Apparatus for Direct Observation of Low‐Energy Electron Diffraction Patterns , 1960 .

[10]  J. J. Lander,et al.  Structural Properties of Cleaved Silicon and Germanium Surfaces , 1963 .

[11]  W. Turner,et al.  Absorption Data of Laser‐Type GaAs at 300° and 77°K , 1964 .

[12]  A. Sosin,et al.  Threshold Displacement Energies and Subthreshold Displacements in Copper and Gold Near 10°K , 1964 .

[13]  N. R. Whetten Secondary Electron Emission of Vacuum-Cleaved Solids , 1965 .

[14]  F. Hudda,et al.  Atomic View of Surface Self‐Diffusion: Tungsten on Tungsten , 1966 .

[15]  Richard L. Schwoebel,et al.  Step Motion on Crystal Surfaces. II , 1966 .

[16]  M. Lagally,et al.  Kinematic Low-Energy Electron-Diffraction Intensities from Averaged Data: A Method for Surface Crystallography , 1971 .

[17]  Russell D. Young,et al.  Observation of Metal-Vacuum-Metal Tunneling, Field Emission, and the Transition Region , 1971 .

[18]  Theodore P. Stecher,et al.  The Gum Nebula - A new kind of astronomical object , 1971 .

[19]  M. Lagally,et al.  Averaged Low-Energy Electron Diffraction Intensities from Ni(111) , 1972 .

[20]  M. Lagally,et al.  Elastic Scattering of Low-Energy Electrons from Surfaces , 1974 .

[21]  M. Henzler Atomic steps on single crystals: Experimental methods and properties , 1976 .

[22]  G. Ehrlich Quantitative examination of individual atomic events on solids , 1980 .

[23]  Heinrich Rohrer,et al.  7 × 7 Reconstruction on Si(111) Resolved in Real Space , 1983 .

[24]  Becker,et al.  Real-space observation of surface states on Si(111)7 x 7 with the tunneling microscope. , 1985, Physical review letters.

[25]  E. Bauer The resolution of the low energy electron reflection microscope , 1985 .

[26]  E. Bauer,et al.  An analytical reflection and emission UHV surface electron microscope , 1985 .

[27]  Hamers,et al.  Si(001) Dimer structure observed with scanning tunneling microscopy. , 1985, Physical review letters.

[28]  Becker,et al.  Tunneling images of atomic steps on the Si(111)7 x 7 surface. , 1985, Physical review letters.

[29]  Feenstra,et al.  Surface morphology of GaAs(110) by scanning tunneling microscopy. , 1985, Physical review. B, Condensed matter.

[30]  Becker,et al.  Tunneling images of germanium surface reconstructions and phase boundaries. , 1985, Physical review letters.

[31]  K. Takayanagi,et al.  Structural analysis of Si(111)‐7×7 by UHV‐transmission electron diffraction and microscopy , 1985 .

[32]  Rudolf M. Tromp,et al.  A simplified scanning tunneling microscope for surface science studies , 1986 .

[33]  Hamers,et al.  Surface electronic structure of Si(111)-(7x7) resolved in real space. , 1986, Physical review letters.

[34]  Surface electronic structure of Si(111)-(7x7) resolved in real space. , 1986 .

[35]  M. Lagally,et al.  Scanning tunneling microscopy studies of structural disorder and steps on Si surfaces , 1989 .

[36]  Webb,et al.  Growth and equilibrium structures in the epitaxy of Si on Si(001). , 1989, Physical review letters.

[37]  Webb,et al.  Direct determination of step and kink energies on vicinal Si(001). , 1990, Physical review letters.

[38]  Savage,et al.  Kinetic pathway in Stranski-Krastanov growth of Ge on Si(001). , 1990, Physical review letters.

[39]  Kleiner,et al.  Activation energy for surface diffusion of Si on Si(001): A scanning-tunneling-microscopy study. , 1991, Physical review letters.

[40]  T. Nagao,et al.  Origin of the stability of Ge(105) on si: a new structure model and surface strain relaxation. , 2002, Physical review letters.