Hyperbolic-polaritons-enabled dark-field lens for sensitive detection

Sensitive detection of features in a nanostructure may sometimes be puzzled in the presence of significant background noise. In this regard, background suppression and super-resolution are substantively important for detecting weakly scattering nanoscale features. Here, we present a lens design, termed hyperbolic-polaritons-enabled dark-field lens (HPEDL), which has the ability to accomplish straightforward sensitive detection. This HPEDL structure consists of type I and type II hyperbolic media that support high-k field waves via hyperbolic polaritons (HPs). We show that the cone-like characteristics of the HPs could be manipulated while the influence of the low-k field waves would be removed. Numerical simulations demonstrate that this proposed structure can successfully realize straightforward sensitive detection by modifying its thickness under the phase compensation condition. Besides, the minimum resolvable length and angular-dependent performance for sensitive detection are also demonstrated by simulations. Remarkably, these findings are very promising for propelling nanophotonics technologies and constitute a further important step towards practical applications of optical microscopy.

[1]  Zhaowei Liu,et al.  Optical Negative Refraction in Bulk Metamaterials of Nanowires , 2008, Science.

[2]  N. Litchinitser,et al.  Indefinite by Nature: From Ultraviolet to Terahertz , 2014 .

[3]  George V. Eleftheriades,et al.  An Optical Super-Microscope for Far-field, Real-time Imaging Beyond the Diffraction Limit , 2013, Scientific Reports.

[4]  Janos Perczel,et al.  Visible-frequency hyperbolic metasurface , 2015, Nature.

[5]  Xianmin Zhang,et al.  Graphene induced mode bifurcation at low input power , 2015, 1505.02957.

[6]  Zhaowei Liu,et al.  Superlenses to overcome the diffraction limit. , 2008, Nature materials.

[7]  P. Barber Absorption and scattering of light by small particles , 1984 .

[8]  M. Schmid Principles Of Optics Electromagnetic Theory Of Propagation Interference And Diffraction Of Light , 2016 .

[9]  Evgenii E. Narimanov,et al.  Naturally hyperbolic , 2015, Nature Photonics.

[10]  Z. Jacob,et al.  Optical Hyperlens: Far-field imaging beyond the diffraction limit. , 2006, Optics express.

[11]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[12]  D. Basov,et al.  Hamiltonian Optics of Hyperbolic Polaritons in Nanogranules. , 2015, Nano letters.

[13]  Minghui Hong,et al.  Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride , 2014, Nature Communications.

[14]  D. Smith,et al.  Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors. , 2002, Physical Review Letters.

[15]  U. Chettiar,et al.  Hyperbolic and Plasmonic Properties of Silicon/ag Aligned Nanowire Arrays Hyperbolic and Plasmonic Properties of Silicon/ag Aligned Nanowire Arrays , 2022 .

[16]  E. Abbe Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .

[17]  Xiang Zhang,et al.  Metasurfaces for manipulating surface plasmons , 2013 .

[18]  A. Lavrinenko,et al.  Dark-field hyperlens: Super-resolution imaging of weakly scattering objects. , 2015, Optics express.

[19]  Vladimir M. Shalaev,et al.  Sub‐wavelength interference pattern from volume plasmon polaritons in a hyperbolic medium , 2013 .

[20]  Fei Gao,et al.  Probing topological protection using a designer surface plasmon structure , 2016, Nature communications.

[21]  J. W. Stephenson Observations on Professor Abbe's Experiments illustrating his Theory of Microscopic Vision , 1877 .

[22]  Faxin Yu,et al.  A metasurface carpet cloak for electromagnetic, acoustic and water waves , 2016, Scientific Reports.

[23]  Zhaowei Liu,et al.  Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects , 2007, Science.

[24]  Guy Cox,et al.  Optical Imaging Techniques in Cell Biology , 2006 .

[25]  Frank H. L. Koppens,et al.  Direct observation of ultraslow hyperbolic polariton propagation with negative phase velocity , 2015, Nature Photonics.

[26]  Alessandro Salandrino,et al.  Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations , 2006 .

[27]  Yi Xiong,et al.  Far-field optical superlens. , 2007, Nano letters.

[28]  K. Webb,et al.  Subwavelength imaging with nonmagnetic anisotropic bilayers. , 2009, Optics letters.

[29]  Mark R. Dennis,et al.  A super-oscillatory lens optical microscope for subwavelength imaging. , 2012, Nature materials.

[30]  I. Smolyaninov,et al.  Magnifying Superlens in the Visible Frequency Range , 2006, Science.

[31]  G. Shvets,et al.  Near-Field Microscopy Through a SiC Superlens , 2006, Science.

[32]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[33]  Dylan Lu,et al.  Hyperlenses and metalenses for far-field super-resolution imaging , 2012, Nature Communications.

[34]  C. Soukoulis,et al.  Ultrathin metasurface with topological transition for manipulating spoof surface plasmon polaritons , 2016, 1604.05830.

[35]  Fang Li,et al.  Far-field Imaging beyond the Diffraction Limit Using a Single Radar , 2014 .

[36]  F. Goudail,et al.  Dark-field hyperlens exploiting a planar fan of tips , 2012 .

[37]  N. Fang,et al.  Sub–Diffraction-Limited Optical Imaging with a Silver Superlens , 2005, Science.

[38]  X. Liu,et al.  Photonic transport in a graphene van der Waals homojunction , 2015 .

[39]  Pavel A. Belov,et al.  Subwavelength imaging at infrared frequencies using an array of metallic nanorods , 2007 .

[40]  Hongsheng Chen,et al.  Loss induced amplification of graphene plasmons , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[41]  Leonid Alekseyev,et al.  Supplementary Information for “ Negative refraction in semiconductor metamaterials ” , 2007 .

[42]  M. Soljačić,et al.  Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs , 2016, Scientific Reports.

[43]  P. Sheng,et al.  Theory and Simulations , 2003 .

[44]  Peining Li,et al.  Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing , 2015, Nature communications.

[45]  Zhaowei Liu,et al.  Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies. , 2010, Nature communications.

[46]  Hongsheng Chen,et al.  Design of Ultracompact Graphene-Based Superscatterers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[47]  Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material , 2015, Nature communications.

[48]  Andrea Alù,et al.  Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces. , 2015, Physical review letters.