Measurement of the elliptical birefringence of single-mode optical fibers.

The polarization properties of single-mode optical fibers are theoretically modeled with use of the Jones formalism. The fiber is described as an elliptical birefringent plate. The properties predicted by this model are discussed and lead to the development of a simple experimental method to extract the parameters that describe a real fiber. A magneto-optic method that measures the beat length of the fiber is also presented and gives a more complete description of the fiber. The validity of the model is then clearly established. Finally, the wavelength dependence of the parameters characteristic of the fiber is experimentally investigated.

[1]  Polarization related phenomena in Nd-doped fiber lasers , 1994 .

[2]  Measurement of the beat length in high-birefringent optical fiber by way of magnetooptic modulation , 1994 .

[3]  D. Payne,et al.  Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors. , 1982, Optics letters.

[4]  R. Ulrich,et al.  Polarization optics of twisted single-mode fibers. , 1979, Applied optics.

[5]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[6]  B. Kim,et al.  Polarization properties of fiber lasers with twist-induced circular birefringence. , 1997, Applied optics.

[7]  Polarization properties of a twisted fiber laser. , 1995, Optics letters.

[8]  C. Poole,et al.  Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling. , 1989, Optics Letters.

[9]  F Matera,et al.  Evolution of the bandwidth of the principal states of polarization in single-mode fibers. , 1991, Optics letters.

[10]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[11]  R. E. Wagner,et al.  Phenomenological approach to polarisation dispersion in long single-mode fibres , 1986 .

[12]  R. Clark Jones,et al.  A New Calculus for the Treatment of Optical Systems. VII. Properties of the N-Matrices , 1948 .

[13]  M. Monerie,et al.  Polarization mode coupling in long single-mode fibres , 1980 .

[14]  R Dandliker,et al.  Polarimetric fiber optical sensor with high sensitivity using a Fabry-Perot structure. , 1989, Applied optics.

[15]  S H Yun,et al.  Response of fiber lasers to an axial magnetic field. , 1995, Optics letters.

[16]  W. Dultz,et al.  Rotation of the polarization plane in optical fibers , 1997 .

[17]  E. Delevaque,et al.  Channeled spectrum of a fiber laser. , 1993, Optics letters.

[18]  D. L. Favin,et al.  Polarization-mode dispersion measurements based on transmission spectra through a polarizer , 1994 .

[19]  N. S. Bergano,et al.  Polarization dispersion and principal states in a 147-km undersea lightwave cable , 1988 .

[20]  R. Roy,et al.  Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence. , 1999, Applied optics.

[21]  Ivan P. Kaminow,et al.  Polarization in optical fibers , 1981 .

[22]  Ammar Hideur,et al.  Yb-doped double-clad fiber laser in a unidirectional ring cavity , 2001, SPIE Optics East.

[23]  Smith Am,et al.  Polarization and magnetooptic properties of single-mode optical fiber , 1978 .

[24]  S. Rashleigh Origins and control of polarization effects in single-mode fibers (A) , 1982 .

[25]  F Matera,et al.  Measurement of the group-delay difference between the principal states of polarization on a low-birefringence terrestrial fiber cable. , 1987, Optics letters.

[26]  M. Turpin,et al.  Mesure de la biréfringence des fibres optiques monomodes à maintien de polarisation linéaire , 1983 .