Upward planar graphs and their duals

We consider upward planar drawings of directed graphs in the plane (UP), and on standing (SUP) and rolling cylinders (RUP). In the plane and on the standing cylinder the edge curves are monotonically increasing in y-direction. On the rolling cylinder they wind unidirectionally around the cylinder. There is a strict hierarchy of classes of upward planar graphs: UP ? SUP ? RUP .In this paper, we show that rolling and standing cylinders switch roles when considering an upward planar graph and its dual. In particular, we prove that a strongly connected graph is RUP if and only if its dual is a SUP dipole. A dipole is an acyclic graph with a single source and a single sink. All RUP graphs are characterized in terms of their duals using generalized dipoles. Moreover, we obtain a characterization of the primals and duals of wSUP graphs which are upward planar graphs on the standing cylinder and allow for horizontal edge curves.

[1]  MICHAEL D. HUTTON,et al.  Upward planar drawing of single source acyclic digraphs , 1991, SODA '91.

[2]  Mitsuhiko Toda,et al.  Methods for Visual Understanding of Hierarchical System Structures , 1981, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  S. Mehdi Hashemi,et al.  Upward Drawings to Fit Surfaces , 1994, ORDAL.

[4]  Christian Bachmaier,et al.  Rolling Upward Planarity Testing of Strongly Connected Graphs , 2013, WG.

[5]  Christian Bachmaier,et al.  A Radial Adaptation of the Sugiyama Framework for Visualizing Hierarchical Information , 2007, IEEE Transactions on Visualization and Computer Graphics.

[6]  Roberto Tamassia,et al.  On the Computational Complexity of Upward and Rectilinear Planarity Testing , 1994, SIAM J. Comput..

[7]  Christopher Auer,et al.  Planar graphs and their duals on cylinder surfaces , 2014 .

[8]  David Kelly Fundamentals of planar ordered sets , 1987, Discret. Math..

[9]  Walter Didimo,et al.  Quasi-Upward Planarity , 1998, Algorithmica.

[10]  Ardeshir Dolati,et al.  On the sphericity testing of single source digraphs , 2008, Discret. Math..

[11]  Roberto Tamassia,et al.  Algorithms for Plane Representations of Acyclic Digraphs , 1988, Theor. Comput. Sci..

[12]  Jorge Urrutia,et al.  Light sources, obstructions and spherical orders , 1992, Discret. Math..

[13]  Christian Bachmaier,et al.  Drawing Recurrent Hierarchies , 2012, J. Graph Algorithms Appl..

[14]  C. Thomassen Planar acyclic oriented graphs , 1989 .

[15]  Gregory Gutin,et al.  Digraphs - theory, algorithms and applications , 2002 .

[16]  C. R. Platt,et al.  Planar lattices and planar graphs , 1976, J. Comb. Theory, Ser. B.

[17]  Ardeshir Dolati Digraph Embedding on Th , 2008, CTW.

[18]  Christian Bachmaier,et al.  The Duals of Upward Planar Graphs on Cylinders , 2012, WG.

[19]  Franz-Josef Brandenburg,et al.  Upward planar drawings on the standing and the rolling cylinders , 2014, Comput. Geom..

[20]  Achilleas Papakostas,et al.  Upward Planarity Testing of Outerplanar Dags ( Extended Abstract ) , 2005 .

[21]  Achilleas Papakostas Upward Planarity Testing of Outerplanar Dags , 1994, Graph Drawing.

[22]  Ardeshir Dolati Digraph Embedding on T h . , 2008 .

[23]  Meena Mahajan,et al.  Evaluating Monotone Circuits on Cylinders, Planes and Tori , 2006, STACS.

[24]  Carlo Mannino,et al.  Upward drawings of triconnected digraphs , 2005, Algorithmica.

[25]  Kristoffer Arnsfelt Hansen Constant Width Planar Computation Characterizes ACC0 , 2005, Theory of Computing Systems.

[26]  Andrzej Kisielewicz,et al.  The Complexity of Upward Drawings on Spheres , 1997 .

[27]  Ioannis G. Tollis,et al.  Representations of Graphs on a Cylinder , 1991, SIAM J. Discret. Math..

[28]  S. Mehdi Hashemi Digraph embedding , 2001, Discret. Math..

[29]  Meena Mahajan,et al.  Upper Bounds for Monotone Planar Circuit Value and Variants , 2009, computational complexity.

[30]  Walter Didimo,et al.  Upward Spirality and Upward Planarity Testing , 2005, SIAM J. Discret. Math..

[31]  Christian Bachmaier,et al.  Classification of Planar Upward Embedding , 2011, Graph Drawing.

[32]  R. Tamassia,et al.  Upward planarity testing , 1995 .

[33]  Ardeshir Dolati,et al.  On the Upward Embedding on the Torus , 2008 .