Quantum machine learning and quantum biomimetics: A perspective

Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies. It may permit, on the one hand, to carry out more efficient machine learning calculations by means of quantum devices, while, on the other hand, to employ machine learning techniques to better control quantum systems. Inside quantum machine learning, quantum reinforcement learning aims at developing "intelligent" quantum agents that may interact with the outer world and adapt to it, with the strategy of achieving some final goal. Another paradigm inside quantum machine learning is that of quantum autoencoders, which may allow one for employing fewer resources in a quantum device via a previous supervised training. Moreover, the field of quantum biomimetics aims at establishing analogies between biological and quantum systems, to look for previously inadvertent connections that may enable useful applications. Two recent examples are the concepts of quantum artificial life, as well as of quantum memristors. In this article, we aim at giving an overview of these topics, describing the related research carried out by the quantum machine learning community.

[1]  E. Solano,et al.  Biomimetic Cloning of Quantum Observables , 2013, Scientific Reports.

[2]  Jens Eisert,et al.  Reinforcement learning decoders for fault-tolerant quantum computation , 2018, Mach. Learn. Sci. Technol..

[3]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[4]  M Sanz,et al.  Genetic Algorithms for Digital Quantum Simulations. , 2015, Physical review letters.

[5]  Leon O. Chua,et al.  Circuit Elements With Memory: Memristors, Memcapacitors, and Meminductors , 2009, Proceedings of the IEEE.

[6]  E. Solano,et al.  Quantum memristors , 2015, Scientific Reports.

[7]  Maria Schuld,et al.  Supervised Learning with Quantum Computers , 2018 .

[8]  Vedran Dunjko,et al.  Quantum speedup for active learning agents , 2014, 1401.4997.

[9]  Mauro Paternostro,et al.  Supervised learning of time-independent Hamiltonians for gate design , 2018, New Journal of Physics.

[10]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[11]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[12]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[13]  Enrique Solano,et al.  Artificial Life in Quantum Technologies , 2015, Scientific Reports.

[14]  Tom Froese,et al.  The Past, Present, and Future of Artificial Life , 2014, Front. Robot. AI.

[15]  Radhika Nagpal,et al.  Designing Collective Behavior in a Termite-Inspired Robot Construction Team , 2014, Science.

[16]  Rupak Biswas,et al.  Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers , 2017, Quantum Science and Technology.

[17]  L. Lamata,et al.  The Forbidden Quantum Adder , 2014, Scientific Reports.

[18]  J. C. Retamal,et al.  Multiqubit and multilevel quantum reinforcement learning with quantum technologies , 2017, PloS one.

[19]  Srinivasan Arunachalam,et al.  Optimizing quantum optimization algorithms via faster quantum gradient computation , 2017, SODA.

[20]  Barry C. Sanders,et al.  Designing High-Fidelity Single-Shot Three-Qubit Gates: A Machine Learning Approach , 2015, ArXiv.

[21]  M. A. Martin-Delgado,et al.  On Quantum Effects in a Theory of Biological Evolution , 2011, Scientific Reports.

[22]  L. Lamata,et al.  Approximate Quantum Adders with Genetic Algorithms: An IBM Quantum Experience , 2016, 1611.07851.

[23]  Pavel Sekatski,et al.  Setting up experimental Bell test with reinforcement learning , 2020, Physical review letters.

[24]  Enrique Solano,et al.  Quantum Artificial Life in an IBM Quantum Computer , 2017, Scientific Reports.

[25]  Rupak Biswas,et al.  Quantum-Assisted Learning of Hardware-Embedded Probabilistic Graphical Models , 2016, 1609.02542.

[26]  Akram Youssry,et al.  Modeling and control of a reconfigurable photonic circuit using deep learning , 2019, Quantum Science and Technology.

[27]  Lov K. Grover Quantum Mechanics Helps in Searching for a Needle in a Haystack , 1997, quant-ph/9706033.

[28]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[29]  Ewin Tang,et al.  A quantum-inspired classical algorithm for recommendation systems , 2018, Electron. Colloquium Comput. Complex..

[30]  J. Eisert,et al.  Quantum Games and Quantum Strategies , 1998, quant-ph/9806088.

[31]  Hans-J. Briegel,et al.  Machine learning for long-distance quantum communication , 2019, PRX Quantum.

[32]  Peter Wittek,et al.  A non-review of Quantum Machine Learning: trends and explorations , 2020 .

[33]  Wolfgang Banzhaf,et al.  Artificial ChemistriesA Review , 2001, Artificial Life.

[34]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[35]  Andrzej Grudka,et al.  Creating a Superposition of Unknown Quantum States. , 2015, Physical review letters.

[36]  J. Carrasquilla Machine learning for quantum matter , 2020, 2003.11040.

[37]  P. Rebentrost,et al.  Quantum machine learning for quantum anomaly detection , 2017, 1710.07405.

[38]  Roger G. Melko,et al.  Integrating Neural Networks with a Quantum Simulator for State Reconstruction. , 2019, Physical review letters.

[39]  Xin Wang,et al.  When does reinforcement learning stand out in quantum control? A comparative study on state preparation , 2019, npj Quantum Information.

[40]  S. Knysh,et al.  Quantum Optimization of Fully-Connected Spin Glasses , 2014, 1406.7553.

[41]  Florian Marquardt,et al.  Reinforcement Learning with Neural Networks for Quantum Feedback , 2018, Physical Review X.

[42]  Alexander Alodjants,et al.  Predicting quantum advantage by quantum walk with convolutional neural networks , 2019, New Journal of Physics.

[43]  Barry C Sanders,et al.  High-Fidelity Single-Shot Toffoli Gate via Quantum Control. , 2015, Physical review letters.

[44]  Alexander Alodjants,et al.  Machine learning transfer efficiencies for noisy quantum walks , 2020, ArXiv.

[45]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[46]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[47]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[48]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[49]  José David Martín-Guerrero,et al.  Quantum autoencoders via quantum adders with genetic algorithms , 2017, Quantum Science and Technology.

[50]  Liang Jiang,et al.  Efficient cavity control with SNAP gates , 2020, 2004.14256.

[51]  Enrique Solano,et al.  Quantum Memristors in Quantum Photonics , 2017, APL Photonics.

[52]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[53]  Walter Vinci,et al.  Quantum variational autoencoder , 2018, Quantum Science and Technology.

[54]  N. Wiebe,et al.  Tomography and generative training with quantum Boltzmann machines , 2016, 1612.05204.

[55]  Christopher G. Langton,et al.  Artificial Life , 2019, Philosophical Posthumanism.

[56]  Alán Aspuru-Guzik,et al.  Quantum Neuron: an elementary building block for machine learning on quantum computers , 2017, ArXiv.

[57]  Enrique Solano,et al.  Quantum Machine Learning and Bioinspired Quantum Technologies , 2019, Advanced Quantum Technologies.

[58]  E. Solano,et al.  Quantized Three-Ion-Channel Neuron Model for Neural Action Potentials , 2019, Quantum.

[59]  Jian-Shun Tang,et al.  Reconstruction of a Photonic Qubit State with Reinforcement Learning , 2018, Advanced Quantum Technologies.

[60]  Fabio Costa,et al.  Quantum Markovianity as a supervised learning task , 2018, International Journal of Quantum Information.

[61]  Marin Bukov,et al.  Reinforcement learning for autonomous preparation of Floquet-engineered states: Inverting the quantum Kapitza oscillator , 2018, Physical Review B.

[62]  Yu-Bo Sheng,et al.  Distributed secure quantum machine learning. , 2017, Science bulletin.

[63]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[64]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[65]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[66]  Chiara Macchiavello,et al.  An artificial neuron implemented on an actual quantum processor , 2018, npj Quantum Information.

[67]  S. Montangero,et al.  Quantum Game of Life , 2010, 1010.4666.

[68]  Enrique Solano,et al.  Measurement-based adaptation protocol with quantum reinforcement learning , 2018, Quantum Reports.

[69]  D. A. Grigoriev,et al.  Machine Learning Non-Markovian Quantum Dynamics. , 2019, Physical review letters.

[70]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[71]  Alejandro Perdomo-Ortiz,et al.  Quantum-assisted Helmholtz machines: A quantum–classical deep learning framework for industrial datasets in near-term devices , 2017, ArXiv.

[72]  Jacob M. Taylor,et al.  Machine learning techniques for state recognition and auto-tuning in quantum dots , 2017, npj Quantum Information.

[73]  Jelena Mackeprang,et al.  A reinforcement learning approach for quantum state engineering , 2019, Quantum Mach. Intell..

[74]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[75]  E. Torrontegui,et al.  Unitary quantum perceptron as efficient universal approximator , 2018, EPL (Europhysics Letters).

[76]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[77]  Master Gardener,et al.  Mathematical games: the fantastic combinations of john conway's new solitaire game "life , 1970 .

[78]  Pankaj Mehta,et al.  Reinforcement Learning in Different Phases of Quantum Control , 2017, Physical Review X.

[79]  Enrique Solano,et al.  Supervised Quantum Learning without Measurements , 2017, Scientific Reports.

[80]  Masoud Mohseni,et al.  Commercialize quantum technologies in five years , 2017, Nature.

[81]  Xi Chen,et al.  Experimental Implementation of a Quantum Autoencoder via Quantum Adders , 2018, Advanced Quantum Technologies.

[82]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[83]  Lucas Lamata Manuel,et al.  Invited Article: Quantum Memristors in Quantum Photonics , 2018 .

[84]  E. Solano,et al.  Reinforcement learning for semi-autonomous approximate quantum eigensolver , 2019, Mach. Learn. Sci. Technol..

[85]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[86]  David J. Schwab,et al.  A high-bias, low-variance introduction to Machine Learning for physicists , 2018, Physics reports.

[87]  Franco Nori,et al.  Qubit-based memcapacitors and meminductors , 2016, 1602.07230.

[88]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[89]  Bryan O'Gorman,et al.  A case study in programming a quantum annealer for hard operational planning problems , 2014, Quantum Information Processing.

[90]  Hans-J. Briegel,et al.  Quantum-enhanced machine learning , 2016, Physical review letters.

[91]  Geoff J Pryde,et al.  Experimental Realization of a Quantum Autoencoder: The Compression of Qutrits via Machine Learning. , 2018, Physical review letters.

[92]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[93]  Seth Lloyd,et al.  Quantum-inspired algorithms in practice , 2019, Quantum.

[94]  Xin Wang,et al.  Transferable control for quantum parameter estimation through reinforcement learning , 2019, 1904.11298.

[95]  E. Solano,et al.  Quantum Memristors with Superconducting Circuits , 2016, Scientific Reports.

[96]  Nathan Wiebe,et al.  Pattern recognition techniques for Boson Sampling validation , 2017, Physical Review X.

[97]  Lucas Lamata,et al.  Basic protocols in quantum reinforcement learning with superconducting circuits , 2017, Scientific Reports.

[98]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.