An Introduction to Spatial Point Processes and Markov Random Fields

Binary-valued Markov random fields may be used as models for point processes with interactions (e.g. repulsion or attraction) between their points. This paper aims to provide a simple nontechnical introduction to Markov random fields in this context. The underlying spaces on which points occur are taken to be countable (e.g. lattice vertices) or continuous (Euclidean space). The role of Markov random fields as equilibrium processes for the temporal evolution of spatial processes is also discussed and various applications and examples are given.

[1]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[2]  A. Kolmogoroff,et al.  Zur Umkehrbarkeit der statistischen Naturgesetze , 1937 .

[3]  J. Doob Stochastic processes , 1953 .

[4]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[5]  M. Nagasawa The adjoint process of a diffusion with reflecting barrier , 1961 .

[6]  M. Nagasawa The adjoint process of a diffusion with reflecting barrier , 1961 .

[7]  R. Minlos Regularity of the gibbs limit distribution , 1967 .

[8]  David Ruelle,et al.  A variational formulation of equilibrium statistical mechanics and the Gibbs phase rule , 1967 .

[9]  R. Minlos Limiting Gibbs' distribution , 1967 .

[10]  P. L. Dobruschin The Description of a Random Field by Means of Conditional Probabilities and Conditions of Its Regularity , 1968 .

[11]  R. L. Dobrushin,et al.  Gibbsian random fields for lattice systems with pairwise interactions , 1968 .

[12]  M. Bartlett Physical nearest-neighbour models and non-linear time-series , 1971 .

[13]  F. Spitzer Markov Random Fields and Gibbs Ensembles , 1971 .

[14]  J. M. Hammersley,et al.  Markov fields on finite graphs and lattices , 1971 .

[15]  J. Besag Nearest‐Neighbour Systems and the Auto‐Logistic Model for Binary Data , 1972 .

[16]  Colin J. Thompson,et al.  Mathematical Statistical Mechanics , 1972 .

[17]  A. Martin-Löf,et al.  On the uniqueness of the equilibrium state for Ising spin systems , 1972 .

[18]  G. Grimmett A THEOREM ABOUT RANDOM FIELDS , 1973 .

[19]  S. Sherman Markov random fields and gibbs random fields , 1973 .

[20]  C. Preston Gibbs States on Countable Sets , 1974 .

[21]  John P. Moussouris Gibbs and Markov random systems with constraints , 1974 .

[22]  M. Bartlett The statistical analysis of spatial pattern , 1974, Advances in Applied Probability.

[23]  S. Haberman,et al.  The analysis of frequency data , 1974 .

[24]  J. Besag Statistical Analysis of Non-Lattice Data , 1975 .

[25]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[26]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .

[27]  Peter J. Diggle,et al.  Simple Monte Carlo Tests for Spatial Pattern , 1977 .

[28]  R. Lang Unendlich-dimensionale Wienerprozesse mit Wechselwirkung , 1977 .

[29]  T. Liggett,et al.  The stochastic evolution of infinite systems of interacting particles , 1977 .

[30]  F. Spitzer Stochastic time evolution of one dimensional infinite particle systems , 1977 .

[31]  J. Besag Errors‐In‐Variables Estimation for Gaussian Lattice Schemes , 1977 .

[32]  D. K. Pickard A curious binary lattice process , 1977, Journal of Applied Probability.

[33]  Richard Durrett,et al.  An infinite particle system with additive interactions , 1978, Advances in Applied Probability.

[34]  David K. Pickard Unilateral Ising Models , 1978 .

[35]  David Griffeath,et al.  Additive and Cancellative Interacting Particle Systems , 1979 .

[36]  T. Speed,et al.  Markov Fields and Log-Linear Interaction Models for Contingency Tables , 1980 .

[37]  F. Spitzer Infinite Systems with Locally Interacting Components , 1981 .

[38]  E. CastroPeter,et al.  Infinitely Divisible Point Processes , 1982 .