Metal–support interaction effects on chemo–regioselectivity: Hydrogenation of crotonaldehyde on Pt13/CeO2(1 1 1)

Abstract The metal–support interaction on the chemical reactivity is illustrated here by density functional theory calculations for the hydrogenation of crotonaldehyde on Pt13 clusters deposited on CeO2(1 1 1). Adsorption of crotonaldehyde on the supported cluster is globally strengthened, compared to Pt(1 1 1), both on top of the cluster and at the interface with ceria. The activation barriers of the first and the second hydrogenation steps at both C C and C O bonds are consequently increased, but particularly at C O on top of the cluster, with respect to Pt(1 1 1). In contrast, the hydrogenation at C O is far easier at the interface with ceria, which underlines the key role of the support. The considered model shows a preferential route toward the formation of the saturated aldehyde, in contrast to the measurements. This study paves the way to advanced theoretical models with larger nanoparticles supported on reduced ceria in realistic conditions of environment.

[1]  M. V. Ganduglia-Pirovano,et al.  Hydrogen activation, diffusion, and clustering on CeO₂(111): a DFT+U study. , 2014, The Journal of chemical physics.

[2]  Céline Chizallet,et al.  H2‐Induced Reconstruction of Supported Pt Clusters: Metal–Support Interaction versus Surface Hydride , 2011 .

[3]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[4]  Philippe Sautet,et al.  Catalytic hydrogenation of unsaturated aldehydes on Pt(111): understanding the selectivity from first-principles calculations. , 2005, Angewandte Chemie.

[5]  P. Sautet,et al.  Adsorption of α,β-Unsaturated Aldehydes on Pt(111) and Pt−Sn Alloys: II. Crotonaldehyde , 2009 .

[6]  P. Gallezot,et al.  Selective Hydrogenation of a,-Unsaturated Aldehydes , 1998 .

[7]  F. Delbecq,et al.  Acetaldehyde on Pt(111) and Pt/Sn(111): a DFT study of the adsorption structures and of the vibrational spectra. , 2005, The journal of physical chemistry. B.

[8]  P. Sautet,et al.  Adsorption and Vibrations of α,β-Unsaturated Aldehydes on Pt(111) and Pt-Sn Alloy (111) Surfaces. 3. Adsorption Energy vs Adsorption Strength , 2010 .

[9]  S. C. Parker,et al.  Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria , 2005 .

[10]  P. Sautet,et al.  Chemo-regioselectivity in heterogeneous catalysis: competitive routes for C = O and C = C hydrogenations from a theoretical approach. , 2006, Journal of the American Chemical Society.

[11]  J. Conesa Surface anion vacancies on ceria: Quantum modelling of mutual interactions and oxygen adsorption , 2009 .

[12]  Philippe Sautet,et al.  Interplay between Reaction Mechanism and Hydroxyl Species for Water Formation on Pt(111) , 2015 .

[13]  D. Mullins,et al.  Metal–support interactions between Pt and thin film cerium oxide , 2002 .

[14]  S. Rashkeev,et al.  Ethanol oxidation on metal oxide-supported platinum catalysts , 2009 .

[15]  M. Vannice,et al.  Influence of metal–support interactions on the kinetics of liquid-phase citral hydrogenation , 2000 .

[16]  P. Sautet,et al.  Determination of the crotonaldehyde structures on Pt and PtSn surface alloys from a combined experimental and theoretical study , 2006 .

[17]  Vidyadhar Sudhir Ranade,et al.  Hydrogenation of crotonaldehyde over Pt based bimetallic catalysts , 1997 .

[18]  Stefano de Gironcoli,et al.  Reply to “Comment on ‘Taming multiple valency with density functionals: A case study of defective ceria' ” , 2005 .

[19]  J. Silvestre-Albero,et al.  Chemoselective hydrogenation catalysts: Pt on mesostructured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder. , 2004, Journal of the American Chemical Society.

[20]  Konstantin M. Neyman,et al.  Adsorption, Oxidation State, and Diffusion of Pt Atoms on the CeO2(111) Surface , 2010 .

[21]  P. Sautet,et al.  A Density Functional Study of Adsorption Structures of Unsaturated Aldehydes on Pt(111): A Key Factor for Hydrogenation Selectivity , 2002 .

[22]  Thorsten Staudt,et al.  Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. , 2011, Nature materials.

[23]  D. Loffreda,et al.  Theoretical elucidation of the selectivity changes for the hydrogenation of unsaturated aldehydes on Pt(111) , 2009 .

[24]  D. Stacchiola,et al.  Understanding the Role of Oxygen Vacancies in the Water Gas Shift Reaction on Ceria-Supported Platinum Catalysts , 2014 .

[25]  Y. Berthier,et al.  Hydrogenation of 3-Methyl-crotonaldehyde on the Pt(553) Stepped Surface: Influence of the Structure and of Preadsorbed Tin , 1996 .

[26]  Methanol Adsorption on the Clean CeO2(111) Surface: A Density Functional Theory Study , 2007 .

[27]  J. Llorca,et al.  Crotonaldehyde hydrogenation over alumina- and silica-supported Pt-Sn catalysts of different composition. In situ DRIFT study , 2000 .

[28]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[29]  V. Ponec On the role of promoters in hydrogenations on metals; α,β-unsaturated aldehydes and ketones , 1997 .

[30]  Y. Ishikawa,et al.  A Density-Functional Theory Study of the Water−Gas Shift Mechanism on Pt/Ceria(111) , 2009 .

[31]  E. Kümmerle,et al.  The Structures of C–Ce2O3+δ, Ce7O12, and Ce11O20 , 1999 .

[32]  J. Niemantsverdriet,et al.  Pt-CO/SiO2 bimetallic planar model catalysts for selective hydrogenation of crotonaldehyde , 2004 .

[33]  Jing Zhou,et al.  Growth of Pt Nanoparticles on Reducible CeO2(111) Thin Films: Effect of Nanostructures and Redox Properties of Ceria , 2010 .

[34]  K. Hermansson,et al.  Oxygen vacancy formation energy in Pd-doped ceria: a DFT+U study. , 2007, The Journal of chemical physics.

[35]  P. Ruiz,et al.  Crotonaldehyde and methylcrotonaldehyde hydrogenation over Pt(111) and Pt80Fe20(111) single crystals , 1990 .

[36]  Role of Cluster Morphology in the Dynamics and Reactivity of Subnanometer Pt Clusters Supported on Ceria Surfaces , 2014 .

[37]  M. Alfredsson,et al.  A comparison between metal supported c-ZrO2 and CeO2 , 2002 .

[38]  Konstantin M. Neyman,et al.  Effects of deposited Pt particles on the reducibility of CeO2(111). , 2011, Physical chemistry chemical physics : PCCP.

[39]  K. Hermansson,et al.  Atomic and electronic structure of unreduced and reduced CeO2 surfaces: a first-principles study. , 2004, The Journal of chemical physics.

[40]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[41]  J. Conesa Computer modeling of surfaces and defects on cerium dioxide , 1995 .

[42]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[43]  G. Henkelman,et al.  Optimization methods for finding minimum energy paths. , 2008, The Journal of chemical physics.

[44]  Zongxian Yang,et al.  First-principles study of the Pt/CeO2"111… interface , 2007 .

[45]  Takashi Minami,et al.  Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction , 2006 .

[46]  Stefano de Gironcoli,et al.  Taming multiple valency with density functionals: A case study of defective ceria , 2005 .

[47]  J. C. Serrano-Ruiz,et al.  Hydrogenation of α, β unsaturated aldehydes over polycrystalline, (111) and (100) preferentially oriented Pt nanoparticles supported on carbon , 2008 .

[48]  J. Grams,et al.  Pt/Ga2O3 catalysts of selective hydrogenation of crotonaldehyde , 2007 .

[49]  T. Paryjczak,et al.  Pt/ZrO2/TiO2 catalysts for selective hydrogenation of crotonaldehyde: Tuning the SMSI effect for optimum performance , 2007 .

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  D. Loffreda,et al.  Growth of a Pt film on non-reduced ceria: a density functional theory study. , 2012, The Journal of chemical physics.

[52]  J. Ho,et al.  Theoretical calculation of the dehydrogenation of ethanol on a Rh/CeO2(111) surface. , 2006, Journal of Physical Chemistry B.

[53]  Jinyao Tang,et al.  Catalytic properties of Pt cluster-decorated CeO2 nanostructures , 2011 .

[54]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[55]  Peter Claus,et al.  Selective hydrogenation of ά,β-unsaturated aldehydes and other C=O and C=C bonds containing compounds , 1998 .

[56]  S. Nabuurs,et al.  Activity and Selectivity in the Reactions of Substituted α,β-Unsaturated Aldehydes , 1995 .

[57]  Zongxian Yang,et al.  Interfacial properties of NM/CeO2(111) (NM = noble metal atoms or clusters of Pd, Pt and Rh): a first principles study , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[58]  P. Sautet,et al.  Heterogeneous Catalytic Hydrogenation: Is Double Bond/Surface Coordination Necessary? , 2010 .

[59]  Zongxian Yang,et al.  Origin of the High Activity of the Ceria-Supported Copper Catalyst for H2O Dissociation , 2011 .

[60]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[61]  P. Sautet,et al.  Fast prediction of selectivity in heterogeneous catalysis from extended Brønsted-Evans-Polanyi relations: a theoretical insight. , 2009, Angewandte Chemie.

[62]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[63]  M. Koyama,et al.  Different support effect of M/ZrO2 and M/CeO2 (M = Pd and Pt) catalysts on CO adsorption: A periodic density functional study , 2006 .

[64]  J. Lamotte,et al.  An emergent catalytic material: Pt/ZnO catalyst for selective hydrogenation of crotonaldehyde , 2004 .

[65]  Olivier Proux,et al.  Monitoring morphology and hydrogen coverage of nanometric Pt/γ-Al2 O3 particles by in situ HERFD-XANES and quantum simulations. , 2014, Angewandte Chemie.

[66]  R. Harrison,et al.  Adsorption and dissociation of methanol on the fully oxidized and partially reduced (111) cerium oxide surface : Dependence on the configuration of the cerium 4f electrons , 2008 .

[67]  Georg Kresse,et al.  Hybrid functionals applied to rare-earth oxides: The example of ceria , 2007 .

[68]  V. Ponec,et al.  A Study on the Selectivity in Acrolein Hydrogenation on Platinum Catalysts: A Model for Hydrogenation of α,β-Unsaturated Aldehydes , 1995 .

[69]  A. Michaelides,et al.  Theory of gold on ceria. , 2011, Physical chemistry chemical physics : PCCP.

[70]  C. Catlow,et al.  Comparison of the bulk and surface properties of ceria and zirconia by ab initio investigations , 1999 .

[71]  V. Paul-Boncour,et al.  Pt/CeO2 catalysts in crotonaldehyde hydrogenation: Selectivity, metal particle size and SMSI states , 2006 .

[72]  M. Vannice,et al.  Metal-support effects on the intramolecular selectivity of crotonaldehyde hydrogenation over platinum , 1989 .

[73]  Ping Liu,et al.  A new type of strong metal-support interaction and the production of H2 through the transformation of water on Pt/CeO2(111) and Pt/CeO(x)/TiO2(110) catalysts. , 2012, Journal of the American Chemical Society.

[74]  D. Murzin,et al.  Chemoselective hydrogenation of carbonyl compounds over heterogeneous catalysts , 2005 .

[75]  A. Datye,et al.  Comparison of metal-support interactions in pt/TiO2 and Pt/CeO2 , 1995 .