Fast Pareto set generation for nonlinear optimal control problems with multiple objectives

Many practical engineering problems involve the determination of optimal control trajectories for given multiple and conflicting objectives. These conflicting objectives typically give rise to a set of Pareto optimal solutions. To enhance real-time decision making efficient approaches are required for determining the Pareto set in a fast and accurate way. Hereto, the current paper integrates efficient multiple objective scalarisation strategies (e.g., Normal Boundary Intersection and Normalised Normal Constraint) with fast deterministic approaches for dynamic optimisation (e.g., Single and Multiple Shooting). All techniques have been implemented as an easy-to-use add-on module of the automatic control and dynamic optimisation toolkit ACADO (both freely available at www.acadotoolkit.org). Several algorithmic synergies (e.g., hot-start initialisation strategies) are exploited for an additional speed-up. The features of ACADO Multi-Objective are discussed and its use is illustrated on different multiple objective optimal control problems arising in several engineering disciplines.

[1]  L. Lasdon,et al.  On a bicriterion formation of the problems of integrated system identification and system optimization , 1971 .

[2]  J. Impe,et al.  Efficient deterministic multiple objective optimal control of (bio)chemical processes , 2009 .

[3]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[4]  H. Bock,et al.  A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems , 1984 .

[5]  A. Messac,et al.  Normal Constraint Method with Guarantee of Even Representation of Complete Pareto Frontier , 2004 .

[6]  R. K. Ursem Multi-objective Optimization using Evolutionary Algorithms , 2009 .

[7]  J. V. Salcedo,et al.  A new perspective on multiobjective optimization by enhanced normalized normal constraint method , 2008 .

[8]  Moritz Diehl,et al.  ACADO toolkit—An open‐source framework for automatic control and dynamic optimization , 2011 .

[9]  G. R. Sullivan,et al.  The development of an efficient optimal control package , 1978 .

[10]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization: Part II: Software aspects and applications , 2003, Comput. Chem. Eng..

[11]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[12]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[13]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[14]  Indraneel Das On characterizing the “knee” of the Pareto curve based on Normal-Boundary Intersection , 1999 .

[15]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[16]  Moritz Diehl,et al.  Robust nonlinear optimal control of dynamic systems with affine uncertainties , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[17]  A. Messac,et al.  The normalized normal constraint method for generating the Pareto frontier , 2003 .

[18]  Ajay K. Ray,et al.  APPLICATIONS OF MULTIOBJECTIVE OPTIMIZATION IN CHEMICAL ENGINEERING , 2000 .

[19]  I. Y. Kim,et al.  Adaptive weighted-sum method for bi-objective optimization: Pareto front generation , 2005 .

[20]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[21]  J. Impe,et al.  Efficiently solving multiple objective optimal control problems , 2008 .

[22]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[23]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[24]  Mikael Andreas Bianchi,et al.  Adaptive modellbasierte prädiktive Regelung einer Kleinwärmepumpenanlage , 2006 .

[25]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: I. Characterization of the nominal solution , 2003, Comput. Chem. Eng..

[26]  I. Kim,et al.  Adaptive weighted sum method for multiobjective optimization: a new method for Pareto front generation , 2006 .

[27]  X. Blasco,et al.  Global and well-distributed Pareto frontier by modified normalized normal constraint methods for bicriterion problems , 2007 .

[28]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .