Measuring the pressure pattern of the joint surface in the uninjured knee

ZusammenfassungZiel der StudieÜberprüfung eines intraoperativ einsatzbaren Oberflächendruckmesssystems unter Simulation von Operationssaalbedingungen.Art der StudieLeichenexperiment.Material und MethodenAn fünf Leichen wurden die Messproben (K 6900 quad probes) medial und lateral in das Kniegelenk eingeführt. Das Messsystem ermöglicht Datenerfassung in Echtzeit und EDV-gestützte Datenerfassung (K-scan system,Hersteller: Tekscan Inc., South Boston, MA). Initial befand sich das Knie hängend in 90° Beugung in der selben Position wie in einem leg-holder. Dann wurde das Knie manuell bis 0° gestreckt und wieder in Beugung gebracht. Die Daten werden als Relativwerte angegeben, da sie als Grundlage für intraoperative Messungen dienen sollen. Die Absolutwerte würden während der Arthroskopie durch den Druck der Arthroskopiepumpe laufend verändert werden.ErgebnisseDas initiale Verhältnis des Gelenksflächendrucks in 90° Beugung war 1∶1,5 zwischen dem medialen und dem lateralen Gelenksspalt. Während der Streckung stieg der Druck im medialen Gelenksabschnitt und erreichte 1∶1 bei circa 15°, bei voller Streckung lag das Verhältnis bei 1,8∶1 zwischen medial und lateral. Bei der Rückführung des Unterschenkels wurde eine ähnliche Gelenksflächendruckverteilung aufgezeichnet.ZusammenfassungUnter Operationssaalbedingungen ist die Gelenksflächendruckverteilung zwischen dem medialen und lateralen Kniecompartment ist messbar und reproduzierbar. Der Einsatz der Gelenksflächendruckmessung während der Implantation eines Ersatztransplantates für das vordere Kreuzband könnte Daten für eine intraoperative individuelle Qualitätskontrolle liefern.SummaryPurposeTesting an applicable intraoperative system for measuring surface pressure in knee joints, simulating as accurately as possible operating theatre conditions.Type of studyCadaver study.MethodsPressure probes were introduced into the knee joints medially and laterally (K 6900 quad probes) in five cadavers, providing real-time data with computerized data recording (K-scan system, manuf. Tekscan Inc., South Boston, MA). The initial position of the knee was flexed and hanging, as in a leg holder. In simulation of usual operating theatre procedures, the knee was manually extended to 0° and again brought to hanging position. The data are given as relative-pressure values and shouldserve as the basis for intraoperative use. During arthroscopy, absolute-pressure values would then be influenced by the pressure of the arthroscopy pump.ResultsIn 90° flexion the average pressure ratio between the medial and lateral joint compartments was initially 1∶1.5. When the leg was brought to full extension the pressure in the medial compartment increased, giving a pressure ratio of 1∶1 at about 15° and 1.8∶1 at full extension. When bringing the leg back again to 90° a similar pressure ratio curve was recorded.ConclusionsThe pressure relationship between the medial and lateral knee compartments could be recorded and was found reproducible in simulated operating-theatre conditions. The measurement of joint surface pressure during implantation of an anterior cruciate ligament graft could provide data for individual intraoperative quality control, thus improving surgical results.

[1]  C. Herberhold,et al.  An MR‐based technique for quantifying the deformation of articular cartilage during mechanical loading in an intact cadaver joint , 1998, Magnetic resonance in medicine.

[2]  P. Fowler,et al.  A biomechanical analysis of joint contact forces in the posterior cruciate deficient knee , 2005, Knee Surgery, Sports Traumatology, Arthroscopy.

[3]  W Herzog,et al.  Joint contact mechanics in the early stages of osteoarthritis. , 2000, Medical engineering & physics.

[4]  J. Andrish,et al.  Articular Cartilage Contact Pressure after Tibial Tuberosity Transfer , 2001, The American journal of sports medicine.

[5]  Freddie H. Fu,et al.  Use of the International Knee Documentation Committee guidelines to assess outcome following anterior cruciate ligament reconstruction , 1998, Knee Surgery, Sports Traumatology, Arthroscopy.

[6]  M. Kanowski,et al.  Visualization of pressure distribution within loaded joint cartilage by application of angle‐sensitive NMR microscopy , 2000, Magnetic resonance in medicine.

[7]  M. Harris,et al.  An improved method for measuring tibiofemoral contact areas in total knee arthroplasty: a comparison of K-scan sensor and Fuji film. , 1999, Journal of biomechanics.

[8]  M L Hull,et al.  Contact pressure and tension in anterior cruciate ligament grafts subjected to roof impingement during passive extension , 1997, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[9]  T. Wickiewicz,et al.  Contact Pressures at Osteochondral Donor Sites in the Knee , 1998, The American journal of sports medicine.

[10]  D Wirz,et al.  [Validation of the Tekscan system for statistic and dynamic pressure measurements of the human femorotibial joint]. , 2002, Biomedizinische Technik. Biomedical engineering.

[11]  L. Engebretsen,et al.  A Prospective, Randomized Study of Three Operations for Acute Rupture of the Anterior Cruciate Ligament. Five-Year Follow-up of One Hundred and Thirty-one Patients* , 1996, The Journal of bone and joint surgery. American volume.

[12]  D. Wirz,et al.  Die Validierung des Tekscan-Systems für statische und dynamische Druckmessungen am humanen Femorotibialgelenk. Validation of the Tekscan System for Static and Dynamic Pressure Measurements in the Human Femorotibial Joint , 2002 .

[13]  J. Lysholm,et al.  Evaluation of knee ligament surgery results with special emphasis on use of a scoring scale , 1982, The American journal of sports medicine.

[14]  J. Lysholm,et al.  Rating systems in the evaluation of knee ligament injuries. , 1985, Clinical orthopaedics and related research.

[15]  B. Reider,et al.  Anterior cruciate ligament reconstruction using one-third of the patellar ligament, augmented by extra-articular tendon transfers. , 1982, The Journal of bone and joint surgery. American volume.

[16]  R. Jakob,et al.  OAK Knee Evaluation , 2006 .

[17]  B D Beynnon,et al.  Calibration and application of an intra-articular force transducer for the measurement of patellar tendon graft forces: an in situ evaluation. , 1999, Journal of biomechanical engineering.

[18]  J. DiCicco,et al.  Effects of retrograde femoral intramedullary nailing on the patellofemoral articulation. , 1999, Journal of orthopaedic trauma.

[19]  Chun-Hsiung Huang,et al.  Effect of Fuji pressure sensitive film on actual contact characteristics of artificial tibiofemoral joint. , 2002, Clinical biomechanics.

[20]  T Q Lee,et al.  Patellofemoral Joint Kinematics and Contact Pressures in Total Knee Arthroplasty , 1997, Clinical orthopaedics and related research.

[21]  W Herzog,et al.  Material and functional properties of articular cartilage and patellofemoral contact mechanics in an experimental model of osteoarthritis. , 1998, Journal of biomechanics.

[22]  J. DesJardins,et al.  The Effect of Intercondylar Notchplasty on the Patellofemoral Articulation , 1996, The American journal of sports medicine.

[23]  J. Lewis,et al.  Load sharing and graft forces in anterior cruciate ligament reconstructions with the Ligament Augmentation Device , 1989, The American journal of sports medicine.

[24]  MEASURING CONTACT PRESSURE AND CONTACT AREA IN ORTHOPEDIC APPLICATIONS : FUJI FILM VS . TEKSCAN , 2000 .

[25]  C. Herberhold,et al.  In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. , 1999, Journal of biomechanics.