Stochastic Trust-Region Methods with Trust-Region Radius Depending on Probabilistic Models

[1]  Aryan Mokhtari,et al.  IQN: An Incremental Quasi-Newton Method with Local Superlinear Convergence Rate , 2017, SIAM J. Optim..

[2]  Albert S. Berahas,et al.  Global Convergence Rate Analysis of a Generic Line Search Algorithm with Noise , 2019, SIAM J. Optim..

[3]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[4]  R. Durrett Probability: Theory and Examples , 1993 .

[5]  H. Robbins A Stochastic Approximation Method , 1951 .

[6]  Jorge Nocedal,et al.  Representations of quasi-Newton matrices and their use in limited memory methods , 1994, Math. Program..

[7]  Saeed Ghadimi,et al.  Mini-batch stochastic approximation methods for nonconvex stochastic composite optimization , 2013, Mathematical Programming.

[8]  Francis Bach,et al.  SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives , 2014, NIPS.

[9]  Quanquan Gu,et al.  Stochastic Variance-Reduced Cubic Regularized Newton Method , 2018, ICML.

[10]  M. Powell A New Algorithm for Unconstrained Optimization , 1970 .

[11]  John N. Tsitsiklis,et al.  Introduction to Probability , 2002 .

[12]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[13]  Stefania Bellavia,et al.  Stochastic analysis of an adaptive cubic regularization method under inexact gradient evaluations and dynamic Hessian accuracy , 2020, Optimization.

[14]  Jorge Nocedal,et al.  Sample size selection in optimization methods for machine learning , 2012, Math. Program..

[15]  Ya-Xiang Yuan,et al.  Stochastic proximal quasi-Newton methods for non-convex composite optimization , 2019, Optim. Methods Softw..

[16]  Jeffrey Larson,et al.  Stochastic derivative-free optimization using a trust region framework , 2016, Comput. Optim. Appl..

[17]  Katya Scheinberg,et al.  Convergence Rate Analysis of a Stochastic Trust-Region Method via Supermartingales , 2016, INFORMS Journal on Optimization.

[18]  Chih-Jen Lin,et al.  Trust Region Newton Method for Logistic Regression , 2008, J. Mach. Learn. Res..

[19]  A Stochastic Line Search Method with Convergence Rate Analysis , 2018, 1807.07994.

[20]  Aurélien Lucchi,et al.  Sub-sampled Cubic Regularization for Non-convex Optimization , 2017, ICML.

[21]  Peng Xu,et al.  Newton-type methods for non-convex optimization under inexact Hessian information , 2017, Math. Program..

[22]  Katya Scheinberg,et al.  Stochastic optimization using a trust-region method and random models , 2015, Mathematical Programming.

[23]  Alexander J. Smola,et al.  Stochastic Variance Reduction for Nonconvex Optimization , 2016, ICML.

[24]  Alexander J. Smola,et al.  Proximal Stochastic Methods for Nonsmooth Nonconvex Finite-Sum Optimization , 2016, NIPS.

[25]  Z. Harchaoui,et al.  QuickeNing: A Generic Quasi-Newton Algorithm for Faster Gradient-Based Optimization , 2016 .

[26]  Chih-Jen Lin,et al.  A Study on Trust Region Update Rules in Newton Methods for Large-scale Linear Classification , 2017, ACML.

[27]  Jie Liu,et al.  Stochastic Recursive Gradient Algorithm for Nonconvex Optimization , 2017, ArXiv.

[28]  Alexander J. Smola,et al.  Fast incremental method for smooth nonconvex optimization , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[29]  Katya Scheinberg,et al.  Global convergence rate analysis of unconstrained optimization methods based on probabilistic models , 2015, Mathematical Programming.

[30]  Katya Scheinberg,et al.  Global Convergence of General Derivative-Free Trust-Region Algorithms to First- and Second-Order Critical Points , 2009, SIAM J. Optim..

[31]  Simon Günter,et al.  A Stochastic Quasi-Newton Method for Online Convex Optimization , 2007, AISTATS.

[32]  Yi Zhou,et al.  Sample Complexity of Stochastic Variance-Reduced Cubic Regularization for Nonconvex Optimization , 2018, AISTATS.

[33]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[34]  Jie Liu,et al.  SARAH: A Novel Method for Machine Learning Problems Using Stochastic Recursive Gradient , 2017, ICML.

[35]  Roummel F. Marcia,et al.  On solving L-SR1 trust-region subproblems , 2015, Comput. Optim. Appl..

[36]  Tong Zhang,et al.  Accelerating Stochastic Gradient Descent using Predictive Variance Reduction , 2013, NIPS.

[37]  Surya Ganguli,et al.  Identifying and attacking the saddle point problem in high-dimensional non-convex optimization , 2014, NIPS.

[38]  Alexander J. Smola,et al.  Fast Incremental Method for Nonconvex Optimization , 2016, ArXiv.

[39]  Ya-Xiang Yuan,et al.  Recent advances in trust region algorithms , 2015, Mathematical Programming.

[40]  Émilie Chouzenoux,et al.  A two-stage subspace trust region approach for deep neural network training , 2017, 2017 25th European Signal Processing Conference (EUSIPCO).

[41]  Shiqian Ma,et al.  Stochastic Quasi-Newton Methods for Nonconvex Stochastic Optimization , 2014, SIAM J. Optim..

[42]  Katya Scheinberg,et al.  Convergence of Trust-Region Methods Based on Probabilistic Models , 2013, SIAM J. Optim..

[43]  Michael I. Jordan,et al.  Stochastic Cubic Regularization for Fast Nonconvex Optimization , 2017, NeurIPS.

[44]  R. Anton,et al.  A Superlinearly-Convergent Proximal Newton-type Method for the Optimization of Finite Sums , 2016 .

[45]  Saeed Ghadimi,et al.  Second-Order Methods with Cubic Regularization Under Inexact Information , 2017, 1710.05782.

[46]  L. N. Vicente,et al.  Complexity and global rates of trust-region methods based on probabilistic models , 2018 .

[47]  Jorge Nocedal,et al.  A Stochastic Quasi-Newton Method for Large-Scale Optimization , 2014, SIAM J. Optim..

[48]  J. Blanchet,et al.  Convergence Rate Analysis of a Stochastic Trust Region Method for Nonconvex Optimization , 2016 .

[49]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[50]  Alexander J. Smola,et al.  Fast Stochastic Methods for Nonsmooth Nonconvex Optimization , 2016, ArXiv.

[51]  Raghu Pasupathy,et al.  Simulation Optimization: A Concise Overview and Implementation Guide , 2013 .

[52]  Ya-xiang Yuan,et al.  On the convergence and worst-case complexity of trust-region and regularization methods for unconstrained optimization , 2015, Math. Program..

[53]  Katya Scheinberg,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..