Optimization reformulations of the generalized Nash equilibrium problem using regularized indicator Nikaidô–Isoda function

In this paper, we extend the literature by adapting the Nikaidô–Isoda function as an indicator function termed as regularized indicator Nikaidô–Isoda function, and this is demonstrated to guarantee existence of a solution. Using this function, we present two constrained optimization reformulations of the generalized Nash equilibrium problem (GNEP for short). The first reformulation characterizes all the solutions of GNEP as global minima of the optimization problem. Later this approach is modified to obtain the second optimization reformulation whose global minima characterize the normalized Nash equilibria. Some numerical results are also included to illustrate the behaviour of the optimization reformulations.

[1]  Patrick T. Harker,et al.  Alternative Models of Spatial Competition , 1986, Oper. Res..

[2]  Sjur Didrik Flåm,et al.  Noncooperative Convex Games: Computing Equilibrium by Partial Regularization , 1994 .

[3]  Francisco Facchinei,et al.  Generalized Nash Equilibrium Problems , 2010, Ann. Oper. Res..

[4]  Christian Kanzow,et al.  Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions , 2009, Comput. Optim. Appl..

[5]  J. Krawczyk,et al.  Numerical solutions to Nash-Cournot equilibria in coupled constraint electricity markets , 2004, IEEE Transactions on Power Systems.

[6]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[7]  Xiaoqi Yang,et al.  A Unified Augmented Lagrangian Approach to Duality and Exact Penalization , 2003, Math. Oper. Res..

[8]  Sven Leyffer,et al.  Solving multi-leader–common-follower games , 2010, Optim. Methods Softw..

[9]  A. Bensoussan Points de Nash Dans le Cas de Fonctionnelles Quadratiques et Jeux Differentiels lineaires a N Personnes , 1974 .

[10]  Gül Gürkan,et al.  Approximations of Nash equilibria , 2008, Math. Program..

[11]  Masao Fukushima,et al.  Equivalent differentiable optimization problems and descent methods for asymmetric variational inequality problems , 1992, Math. Program..

[12]  Alejandro Jofré,et al.  Continuity Properties of Walras Equilibrium Points , 2002, Ann. Oper. Res..

[13]  C. S. Lalitha A new augmented Lagrangian approach to duality and exact penalization , 2010, J. Glob. Optim..

[14]  Giandomenico Mastroeni,et al.  Gap Functions for Equilibrium Problems , 2003, J. Glob. Optim..

[15]  P. Harker Generalized Nash games and quasi-variational inequalities , 1991 .

[16]  H. Nikaidô,et al.  Note on non-cooperative convex game , 1955 .

[17]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[18]  R. Rubinstein,et al.  On relaxation algorithms in computation of noncooperative equilibria , 1994, IEEE Trans. Autom. Control..

[19]  Anna Nagurney,et al.  Variational Inequalities , 2009, Encyclopedia of Optimization.