Quantum Protocols involving Multiparticle Entanglement and their Representations in the zx-calculus.

Quantum entanglement, described by Einstein as “spooky action at a distance”, is a key resource in many quantum protocols, like quantum teleportation and quantum cryptography. Yet entanglement makes protocols presented in Dirac notation difficult to follow and check. This is why Coecke nad Duncan have introduced a diagrammatic language for multi-qubit systems, called the red/green calculus or the zx-calculus [23]. This diagrammatic notation is both intuitive and formally rigorous. It is a simple, graphical, high level language that emphasises the composition of systems and naturally captures the essentials of quantum mechanics. One crucial feature that will be exploited here is the encoding of complementary observables and corresponding phase shifts. Reasoning is done by rewriting diagrams, i.e. locally replacing some part of a diagram. Diagrams are defined by their topology only; the number of inputs and outputs and the way they are connected. This exemplifies the ‘flow’ of information. For protocols involving multipartite entangled states, such as the GreenbergerHorne-Zeilinger and W -state, it will be shown that the zx-calculus provides a relatively easy and more intuitive presentation. Moreover, in this representation it is easier to check that protocols are correct. Protocols that will be discussed in detail are quantum teleportation, quantum cryptography, leader election, superdense coding and quantum direct communication with multipartite entangled states.

[1]  Jose L. Cereceda Quantum dense coding using three qubits , 2001 .

[2]  Albrecht Beutelspacher How to Say "No" , 1989, EUROCRYPT.

[3]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[4]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[5]  Tang Chao-jing,et al.  Quantum Secure Communication Scheme with W State , 2007 .

[6]  Jinhyoung Lee,et al.  Quantum Secure Communication with W States , 2002, quant-ph/0204003.

[7]  Bill Edwards,et al.  Three qubit entanglement within graphical Z/X-calculus , 2011, HPC.

[8]  Wei Tian,et al.  An Efficient Deterministic Secure Quantum Communication Scheme with W State , 2008, 2008 International Conference on Computational Intelligence and Security.

[9]  Shibdas Roy A Compositional Characterization of Multipartite Quantum States � , 2010 .

[10]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[11]  Aleks Kissinger,et al.  Exploring a Quantum Theory with Graph Rewriting and Computer Algebra , 2009, Calculemus/MKM.

[12]  Teleportation of an Arbitrary Two-Particle State by Two Partial Entangled Three-Particle GHZ States , 2005 .

[13]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[14]  V. N. Gorbachev,et al.  Quantum teleportation of an Einstein-Podolsy-Rosen pair using an entangled three-particle state , 2000 .

[15]  Xin Ji,et al.  Three-party quantum secure direct communication based on GHZ states , 2006, quant-ph/0601125.

[16]  Cao Hai-Jing,et al.  Quantum Secure Direct Communication with W State , 2006 .

[17]  Samson Abramsky,et al.  A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[18]  Wenjie Liu,et al.  Efficient quantum secure direct communication with authentication , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[19]  Li Zhi-qiang,et al.  Efficient Quantum Secure Direct Communication with Authentication , 2007 .

[20]  Jian-Wei Pan,et al.  Efficient multiparty quantum-secret-sharing schemes , 2004, quant-ph/0405179.

[21]  J. Joo,et al.  Quantum teleportation via a W state , 2003, quant-ph/0306175.

[22]  V. N. Gorbachev,et al.  Teleportation of entangled states and dense coding using a multiparticle quantum channel , 2000 .

[23]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[24]  B. Coecke,et al.  Categories for the practising physicist , 2009, 0905.3010.

[25]  S. Bandyopadhyay Teleportation and secret sharing with pure entangled states , 2000, quant-ph/0002032.

[26]  Guang-Can Guo,et al.  Probabilistic teleportation of two-particle entangled state , 2000 .

[27]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[28]  B. Coecke Kindergarten Quantum Mechanics: Lecture Notes , 2006 .

[29]  A. Pati,et al.  Perfect teleportation and superdense coding with W states , 2006, quant-ph/0610001.

[30]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[31]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[32]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[33]  Bruce Schneier,et al.  Applied cryptography : protocols, algorithms, and source codein C , 1996 .

[34]  Fuguo Deng,et al.  Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs (4 pages) , 2005, quant-ph/0504158.

[35]  Prakash Panangaden,et al.  The computational power of the W And GHZ States , 2006, Quantum Inf. Comput..

[36]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[37]  Liu Jun,et al.  Revisiting quantum secure direct communication with W state , 2006 .

[38]  Hwayean Lee,et al.  Quantum direct communication with authentication , 2005, quant-ph/0512051.

[39]  Mitsugu Iwamoto,et al.  Quantum secret sharing schemes and reversibility of quantum operations , 2005 .

[40]  Aleks Kissinger,et al.  The GHZ/W-calculus contains rational arithmetic , 2011, HPC.

[41]  A. Zeilinger,et al.  Quantum computing with controlled-NOT and few qubits , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  Adam D. Smith Quantum secret sharing for general access structures , 2000 .

[43]  Alfredo De Santis,et al.  Secret Sharing Schemes with Veto Capabilities , 1993, Algebraic Coding.

[44]  Mermin Nd Simple unified form for the major no-hidden-variables theorems. , 1990 .

[45]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[46]  Chen Li-Bing Teleportation of an arbitrary three-particle state , 2002 .

[47]  Michael Redhead,et al.  The breakdown of quantum non-locality in the classical limit , 1991 .

[48]  Hideki Imai,et al.  Improving quantum secret-sharing schemes , 2001 .

[49]  Hideki Imai,et al.  A Quantum Information Theoretical Model for Quantum Secret Sharing Schemes , 2003 .

[50]  R. Feynman Simulating physics with computers , 1999 .

[51]  P. Wilcox,et al.  AIP Conference Proceedings , 2012 .

[52]  Weinfurter,et al.  Quantum cryptography with entangled photons , 1999, Physical review letters.

[53]  Gao Gan,et al.  Efficient Quantum Secure Communication Protocol by Rearranging Particle Orders , 2009 .

[54]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[55]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[56]  Luca Marinatto,et al.  WHICH KIND OF TWO-PARTICLE STATES CAN BE TELEPORTED THROUGH A THREE-PARTICLE QUANTUM CHANNEL? , 2000 .

[57]  P. Panangaden,et al.  Leader Election and Distributed Consensus with Quantum Resources , 2004 .

[58]  Simon Perdrix,et al.  Environment and Classical Channels in Categorical Quantum Mechanics , 2010, CSL.

[59]  Quantum Teleportation Schemes of an N-Particle State via Three-Particle General W States , 2008 .

[60]  Anders Karlsson,et al.  Quantum Teleportation using Three Particle Entanglement , 1998, Technical Digest. 1998 EQEC. European Quantum Electronics Conference (Cat. No.98TH8326).

[61]  Sudhir Kumar Singh,et al.  Generalized quantum secret sharing , 2003, quant-ph/0307200.

[62]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[63]  Jie Song,et al.  Teleportation of an N -photon Greenberger-Horne-Zeilinger (GHZ) polarization-entangled state using linear optical elements , 2010 .

[64]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[65]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[66]  Zhi-Xi Wang,et al.  Deterministic secure direct communication using GHZ states and swapping quantum entanglement , 2004, quant-ph/0406082.

[67]  Charles H. Bennett,et al.  Quantum cryptography using any two nonorthogonal states. , 1992, Physical review letters.

[68]  Benjamin C. Peirce,et al.  Basic Category Theory for Computer Scientists , 1991 .

[69]  Zhan-jun Zhang Comment on : Quantum direct communication with authentication , 2006, quant-ph/0604125.

[70]  Deng Fu-Guo,et al.  Probabilistic teleportation of an arbitrary GHZ-class state with a pure entangled two-particle quantum channel and its application in quantum state sharing , 2007 .

[71]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[72]  Qiaoyan Wen,et al.  Cryptanalysis of the Hillery-Buzek-Berthiaume quantum secret-sharing protocol , 2007, 0801.2418.

[73]  Song He-shan,et al.  Teleportation of an Arbitrary Multipartite GHZ-Class State by One EPR Pair , 2006 .

[74]  Aleks Kissinger,et al.  The Compositional Structure of Multipartite Quantum Entanglement , 2010, ICALP.

[75]  S. Lane Categories for the Working Mathematician , 1971 .

[76]  Yan Xia,et al.  Controlled quantum secure direct communication using a non-symmetric quantum channel with quantum superdense coding , 2007 .

[77]  Tzonelih Hwang,et al.  Multiparty quantum secret sharing based on GHZ states , 2011 .

[78]  Peter Selinger,et al.  Dagger Compact Closed Categories and Completely Positive Maps: (Extended Abstract) , 2007, QPL.

[79]  Akihisa Tomita,et al.  Teleportation of an unknown state by W state , 2002 .

[80]  Inbo Kim,et al.  Quantum Secure Communication via a W State , 2005 .

[81]  Jinhyoung Lee,et al.  Multipartite entanglement for entanglement teleportation , 2002, quant-ph/0201069.

[82]  Qing-yu Cai,et al.  The "ping-pong" protocol can be attacked without eavesdropping. , 2003, Physical review letters.

[83]  Bob Coecke,et al.  New Structures for Physics , 2011 .

[84]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[85]  Zhuo-Liang Cao,et al.  Teleportation of a two-particle entangled state via W class states , 2004, quant-ph/0401054.