Heat flow ofp-harmonic maps with values into spheres
暂无分享,去创建一个
[1] Michael Struwe,et al. On the evolution of harmonic maps in higher dimensions , 1988 .
[2] J. Eells,et al. Another Report on Harmonic Maps , 1988 .
[3] Michael Struwe,et al. On the evolution of harmonic mappings of Riemannian surfaces , 1985 .
[4] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[5] Michael Struwe,et al. Existence and partial regularity results for the heat flow for harmonic maps , 1989 .
[6] Yunmei Chen,et al. The weak solutions to the evolution problems of harmonic maps , 1989 .
[7] M. Struwe. The evolution of harmonic maps , 1991 .
[8] Lawrence C. Evans,et al. Weak convergence methods for nonlinear partial differential equations , 1990 .
[9] Wei Ding,et al. Blow-up and global existence for heat flows of harmonic maps , 1990 .
[10] J. Coron,et al. Explosion en temps fini pour le flot des applications harmoniques , 1989 .
[11] Robert Gulliver,et al. Minimizing p-harmonic maps into spheres. , 1989 .
[12] E. Zeidler. Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .
[13] F. Lin,et al. Mappings minimizing the Lp norm of the gradient , 1987 .
[14] J. Eells,et al. Harmonic Mappings of Riemannian Manifolds , 1964 .
[15] M. Giaquinta,et al. Remarks on the regularity of the minimizers of certain degenerate functionals , 1986 .
[16] S. Singh. Nonlinear Functional Analysis and Its Applications , 1986 .
[17] E. Zeidler. Nonlinear functional analysis and its applications , 1988 .
[18] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .