Heat flow ofp-harmonic maps with values into spheres

The global existence of weak solutions for the heat ow of p-harmonic maps of closed Riemannian manifolds into spheres is proved in this paper.

[1]  Michael Struwe,et al.  On the evolution of harmonic maps in higher dimensions , 1988 .

[2]  J. Eells,et al.  Another Report on Harmonic Maps , 1988 .

[3]  Michael Struwe,et al.  On the evolution of harmonic mappings of Riemannian surfaces , 1985 .

[4]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[5]  Michael Struwe,et al.  Existence and partial regularity results for the heat flow for harmonic maps , 1989 .

[6]  Yunmei Chen,et al.  The weak solutions to the evolution problems of harmonic maps , 1989 .

[7]  M. Struwe The evolution of harmonic maps , 1991 .

[8]  Lawrence C. Evans,et al.  Weak convergence methods for nonlinear partial differential equations , 1990 .

[9]  Wei Ding,et al.  Blow-up and global existence for heat flows of harmonic maps , 1990 .

[10]  J. Coron,et al.  Explosion en temps fini pour le flot des applications harmoniques , 1989 .

[11]  Robert Gulliver,et al.  Minimizing p-harmonic maps into spheres. , 1989 .

[12]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[13]  F. Lin,et al.  Mappings minimizing the Lp norm of the gradient , 1987 .

[14]  J. Eells,et al.  Harmonic Mappings of Riemannian Manifolds , 1964 .

[15]  M. Giaquinta,et al.  Remarks on the regularity of the minimizers of certain degenerate functionals , 1986 .

[16]  S. Singh Nonlinear Functional Analysis and Its Applications , 1986 .

[17]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[18]  O. Ladyženskaja Linear and Quasilinear Equations of Parabolic Type , 1968 .