Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice

[1]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[2]  T. H. Newton,et al.  The macro and microvasculature of the dura mater , 1973, Neuroradiology.

[3]  Ruikang K. Wang,et al.  Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography. , 2010, Optics letters.

[4]  Ruikang K. Wang,et al.  Optical Microangiography: A Label-Free 3-D Imaging Technology to Visualize and Quantify Blood Circulations Within Tissue Beds In Vivo , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  H. Wekerle,et al.  Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions , 2009, Nature.

[6]  G. F. Rowbotham,et al.  New concepts on the aetiology and vascularization of meningiomata; the mechanisms of migraine; the chemical processes of the cerebrospinal fluid; and the formation of collections of blood or fluid in the subdural space , 1965, The British journal of surgery.

[7]  M. Kerschensteiner,et al.  In vivo imaging of the diseased nervous system: an update. , 2012, Current pharmaceutical design.

[8]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[9]  Ruikang K. Wang,et al.  Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo. , 2009, Journal of biomedical optics.

[10]  Andrew K. Dunn,et al.  Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model , 2002, Nature Medicine.

[11]  H. H. Lipowsky,et al.  Microvascular Rheology and Hemodynamics , 2005, Microcirculation.

[12]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[13]  Zhongping Chen,et al.  Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation. , 2002, Optics Letters.

[14]  Lin Xu,et al.  An optimized murine model of ferric chloride-induced arterial thrombosis for thrombosis research. , 2005, Thrombosis research.

[15]  G. F. Rowbotham,et al.  Circulations of the cerebral hemispheres , 1965, The British journal of surgery.

[16]  A. Fercher,et al.  Optical coherence tomography - principles and applications , 2003 .

[17]  Ruikang K. Wang,et al.  Directional blood flow imaging in volumetric optical microangiography achieved by digital frequency modulation. , 2008, Optics letters.

[18]  K. Toyka,et al.  Meningeal Hyperperfusion Visualized by MRI in a Patient With Visual Hallucinations and Migraine , 1996, Headache.

[19]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[20]  S. Bracard,et al.  Microvascularization of the intracranial dura mater , 2005, Surgical and Radiologic Anatomy.

[21]  C. Esmon,et al.  Role of Coagulation Factors in Cerebral Venous Sinus and Cerebral Microvascular Thrombosis , 2010, Neurosurgery.

[22]  Ruikang K. Wang,et al.  Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength. , 2007, Optics express.