Succinct Data Structures for Families of Interval Graphs

We consider the problem of designing succinct data structures for interval graphs with $n$ vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal time in the $\Theta(\log n)$-bit word RAM model. The degree query reports the number of incident edges to a given vertex in constant time, the adjacency query returns true if there is an edge between two vertices in constant time, the neighborhood query reports the set of all adjacent vertices in time proportional to the degree of the queried vertex, and the shortest path query returns a shortest path in time proportional to its length, thus the running times of these queries are optimal. Towards showing succinctness, we first show that at least $n\log{n} - 2n\log\log n - O(n)$ bits are necessary to represent any unlabeled interval graph $G$ with $n$ vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a data structure of size $n\log{n} +O(n)$ bits while supporting not only the aforementioned queries optimally but also capable of executing various combinatorial algorithms (like proper coloring, maximum independent set etc.) on the input interval graph efficiently. Finally, we extend our ideas to other variants of interval graphs, for example, proper/unit interval graphs, k-proper and k-improper interval graphs, and circular-arc graphs, and design succinct/compact data structures for these graph classes as well along with supporting queries on them efficiently.

[1]  Kunihiko Sadakane,et al.  Indexing Graph Search Trees and Applications , 2019, MFCS.

[2]  Arash Farzan,et al.  Compact Navigation and Distance Oracles for Graphs with Small Treewidth , 2011, Algorithmica.

[3]  Ross M. McConnell Linear-Time Recognition of Circular-Arc Graphs , 2003, Algorithmica.

[4]  Peter L. Hammer,et al.  Stability in Circular Arc Graphs , 1988, J. Algorithms.

[5]  Joseph Y.-T. Leung,et al.  Efficient algorithms for interval graphs and circular-arc graphs , 1982, Networks.

[6]  Gonzalo Navarro,et al.  Wavelet trees for all , 2012, J. Discrete Algorithms.

[7]  Yota Otachi,et al.  On the Classes of Interval Graphs of Limited Nesting and Count of Lengths , 2016, ISAAC.

[8]  Laurent Viennot,et al.  Lex-BFS and partition refinement, with applications to transitive orientation, interval graph recognition and consecutive ones testing , 2000, Theor. Comput. Sci..

[9]  Steven R. Finch,et al.  Mathematical constants , 2005, Encyclopedia of mathematics and its applications.

[10]  Frank Harary,et al.  Graph Theory , 2016 .

[11]  S. Srinivasa Rao,et al.  Rank/select operations on large alphabets: a tool for text indexing , 2006, SODA '06.

[12]  Peisen Zhang,et al.  An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA , 1994, Comput. Appl. Biosci..

[13]  Prosenjit Bose,et al.  Succinct Orthogonal Range Search Structures on a Grid with Applications to Text Indexing , 2009, WADS.

[14]  Cyril Gavoille,et al.  Optimal Distance Labeling for Interval Graphs and Related Graph Families , 2008, SIAM J. Discret. Math..

[15]  S. Srinivasa Rao,et al.  Biconnectivity, st-numbering and other applications of DFS using O(n) bits , 2016, J. Comput. Syst. Sci..

[16]  Ron Shamir,et al.  Complexity and algorithms for reasoning about time: a graph-theoretic approach , 1993, JACM.

[17]  J. Ian Munro,et al.  Succinct Representation of Balanced Parentheses and Static Trees , 2002, SIAM J. Comput..

[18]  Volker Heun,et al.  Space-Efficient Preprocessing Schemes for Range Minimum Queries on Static Arrays , 2011, SIAM J. Comput..

[19]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[20]  N. Sloane,et al.  Proof Techniques in Graph Theory , 1970 .

[21]  Kunihiko Sadakane,et al.  Succinct data structures for flexible text retrieval systems , 2007, J. Discrete Algorithms.

[22]  D. T. Lee,et al.  Solving the all-pair shortest path query problem on interval and circular-arc graphs , 1998, Networks.

[23]  Nicholas Pippenger,et al.  On the Enumeration of Interval Graphs , 2016 .

[24]  Binay K. Bhattacharya,et al.  An O(m + n log n) Algorithm for the Maximum-Clique Problem in Circular-Arc Graphs , 1997, J. Algorithms.

[25]  S. Benzer ON THE TOPOLOGY OF THE GENETIC FINE STRUCTURE. , 1959, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Mikkel Thorup,et al.  Integer priority queues with decrease key in constant time and the single source shortest paths problem , 2003, STOC '03.

[27]  Kellogg S. Booth,et al.  Testing for the Consecutive Ones Property, Interval Graphs, and Graph Planarity Using PQ-Tree Algorithms , 1976, J. Comput. Syst. Sci..

[28]  P. Hanlon Counting interval graphs , 1982 .

[29]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[30]  J. Ian Munro,et al.  Succinct encoding of arbitrary graphs , 2013, Theor. Comput. Sci..

[31]  Roberto Grossi,et al.  Succinct Representation for (Non)Deterministic Finite Automata , 2019, J. Comput. Syst. Sci..

[32]  M. Golumbic Chapter 3 - Perfect graphs , 2004 .

[33]  Martin Charles Golumbic Interval graphs and related topics , 1985, Discret. Math..

[34]  Reuven Bar-Yehuda,et al.  A unified approach to approximating resource allocation and scheduling , 2001, JACM.

[35]  Olivier Devillers,et al.  Succinct representations of planar maps , 2008, Theor. Comput. Sci..

[36]  S. Srinivasa Rao,et al.  On Space Efficient Two Dimensional Range Minimum Data Structures , 2011, Algorithmica.

[37]  S. Srinivasa Rao,et al.  Space Efficient Linear Time Algorithms for BFS, DFS and Applications , 2017, Theory of Computing Systems.

[38]  Sandi Klavzar,et al.  Intersection graphs of halflines and halfplanes , 1987, Discret. Math..

[39]  Mikkel Thorup,et al.  Changing base without losing space , 2010, STOC '10.

[40]  J. Ian Munro,et al.  Succinct Data Structures for Chordal Graphs , 2018, ISAAC.

[41]  S. Srinivasa Rao,et al.  A Framework for In-place Graph Algorithms , 2018, ESA.

[42]  David R. Clark,et al.  Efficient suffix trees on secondary storage , 1996, SODA '96.

[43]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[44]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[45]  Gonzalo Navarro,et al.  Compact Data Structures - A Practical Approach , 2016 .

[46]  Rajeev Raman,et al.  Succinct representations of permutations and functions , 2011, Theor. Comput. Sci..