Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks.

[1]  T. Vlugt,et al.  Computing the Heat of Adsorption using Molecular Simulations: The Effect of Strong Coulombic Interactions. , 2008, Journal of chemical theory and computation.

[2]  S. Kitagawa,et al.  Rational Synthesis of Stable Channel‐Like Cavities with Methane Gas Adsorption Properties: [{Cu2(pzdc)2(L)}n] (pzdc=pyrazine‐2,3‐dicarboxylate; L=a Pillar Ligand) , 1999 .

[3]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[4]  J. Johnson,et al.  Adsorption of gases in metal organic materials: comparison of simulations and experiments. , 2005, The journal of physical chemistry. B.

[5]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[6]  C. Chabalowski,et al.  Using Kohn−Sham Orbitals in Symmetry-Adapted Perturbation Theory to Investigate Intermolecular Interactions , 2001 .

[7]  Brian Space,et al.  An Accurate and Transferable Intermolecular Diatomic Hydrogen Potential for Condensed Phase Simulation. , 2008, Journal of chemical theory and computation.

[8]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[9]  M. Hartmann,et al.  Improving the hydrogen-adsorption properties of a hydroxy-modified MIL-53(Al) structural analogue by lithium doping. , 2009, Angewandte Chemie.

[10]  R. Snurr,et al.  Using molecular simulation to characterise metal-organic frameworks for adsorption applications. , 2009, Chemical Society reviews.

[11]  R. Ahuja,et al.  Li-decorated metal–organic framework 5: A route to achieving a suitable hydrogen storage medium , 2007, Proceedings of the National Academy of Sciences.

[12]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[13]  Richard Blom,et al.  Application of metal–organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide , 2009 .

[14]  G. Garberoglio,et al.  Computer simulation of the adsorption of light gases in covalent organic frameworks. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[15]  M. O'keeffe,et al.  Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs , 2008, Nature.

[16]  A. Matzger,et al.  Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. , 2008, Journal of the American Chemical Society.

[17]  Yoshiyuki Kawazoe,et al.  Theoretical Study of Hydrogen Storage in Ca-Coated Fullerenes. , 2009, Journal of chemical theory and computation.

[18]  Emmanuel Tylianakis,et al.  Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. , 2008, Nano letters.

[19]  W. Zhou,et al.  Open metal sites within isostructural metal-organic frameworks for differential recognition of acetylene and extraordinarily high acetylene storage capacity at room temperature. , 2010, Angewandte Chemie.

[20]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[21]  S. Qiu,et al.  Computational Design of Porous Organic Frameworks for High-Capacity Hydrogen Storage by Incorporating Lithium Tetrazolide Moieties , 2010 .

[22]  François-Xavier Coudert,et al.  Stress-Based Model for the Breathing of Metal-Organic Frameworks. , 2010, The journal of physical chemistry letters.

[23]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[24]  M. Heuchel,et al.  Adsorption of CH4−CF4 Mixtures in Silicalite: Simulation, Experiment, and Theory , 1997 .

[25]  Qing Min Wang,et al.  Metallo-organic molecular sieve for gas separation and purification , 2002 .

[26]  Wei Zhou,et al.  High-capacity methane storage in metal-organic frameworks M2(dhtp): the important role of open metal sites. , 2009, Journal of the American Chemical Society.

[27]  Chongli Zhong,et al.  A General Approach for Estimating Framework Charges in Metal−Organic Frameworks , 2010 .

[28]  D. Dubbeldam,et al.  Modeling adsorption and self-diffusion of methane in LTA zeolites: the influence of framework flexibility , 2010 .

[29]  K. Gubbins,et al.  Adsorption, isosteric heat and commensurate-incommensurate transition of methane on graphite , 1993 .

[30]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[31]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[32]  William L. Jorgensen,et al.  Optimized intermolecular potential functions for liquid hydrocarbons , 1984 .

[33]  J. Sauer,et al.  Treating dispersion effects in extended systems by hybrid MP2:DFT calculations--protonation of isobutene in zeolite ferrierite. , 2006, Physical chemistry chemical physics : PCCP.

[34]  A. Rappé,et al.  van der Waals functional forms for molecular simulations , 1992 .

[35]  A. Dailly,et al.  Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. , 2006, The journal of physical chemistry. B.

[36]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[37]  T Yildirim,et al.  Titanium-decorated carbon nanotubes as a potential high-capacity hydrogen storage medium. , 2005, Physical review letters.

[38]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[39]  B. Smit,et al.  Computer simulations of the energetics and siting of n-alkanes in zeolites , 1994 .

[40]  Xin Xu,et al.  New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. , 2004, Physical review letters.

[41]  Saeed Amirjalayer,et al.  Atomistic theoretical models for nanoporous hybrid materials , 2010 .

[42]  François-Xavier Coudert,et al.  Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[43]  David S. Sholl,et al.  Screening metal-organic framework materials for membrane-based methane/carbon dioxide separations , 2007 .

[44]  L. Pan,et al.  Adsorption and diffusion of hydrogen in a new metal-organic framework material: [Zn(bdc)(ted)0.5] , 2008 .

[45]  Mohamed Eddaoudi,et al.  On the mechanism of hydrogen storage in a metal-organic framework material. , 2007, Journal of the American Chemical Society.

[46]  S. Chaplot,et al.  Diffusion of acetylene inside Na-Y zeolite: molecular dynamics simulation studies. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  M. Allendorf,et al.  Computational screening of metal-organic frameworks for large-molecule chemical sensing. , 2010, Physical chemistry chemical physics : PCCP.

[48]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[49]  D. Basmadjian ADSORPTION EQUILIBRIA OF HYDROGEN, DEUTERIUM, AND THEIR MIXTURES. PART II , 1960 .

[50]  Jaheon Kim,et al.  Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[51]  J. Hupp,et al.  Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. , 2008, Inorganic chemistry.

[52]  Xiaojun Wu,et al.  Hydrogen Storage in Pillared Li-Dispersed Boron Carbide Nanotubes , 2007, cond-mat/0703519.

[53]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[54]  J. Sauer,et al.  Quantum chemical modeling of zeolite-catalyzed methylation reactions: toward chemical accuracy for barriers. , 2009, Journal of the American Chemical Society.

[55]  Hydrogen storage capacity of C(60)(OM)(12) (M=Li and Na) clusters. , 2009, The Journal of chemical physics.

[56]  E. Klontzas,et al.  Hydrogen Storage in Lithium-Functionalized 3-D Covalent-Organic Framework Materials , 2009 .

[57]  G. Kubas Molecular hydrogen complexes: coordination of a .sigma. bond to transition metals , 1988 .

[58]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes , 1998 .

[59]  Barbara Bonelli,et al.  Enthalpy–entropy correlation for hydrogen adsorption on zeolites , 2008 .

[60]  Sang Soo Han,et al.  Covalent organic frameworks as exceptional hydrogen storage materials. , 2008, Journal of the American Chemical Society.

[61]  W. Goddard,et al.  Zeolitic Imidazolate Frameworks as H2 Adsorbents: Ab Initio Based Grand Canonical Monte Carlo Simulation , 2010 .

[62]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[63]  R. Snurr,et al.  Enhanced Hydrogen Uptake and the Electronic Structure of Lithium-Doped Metal-Organic Frameworks , 2008 .

[64]  Wei Zhou,et al.  Nature and Tunability of Enhanced Hydrogen Binding in Metal-Organic Frameworks with Exposed Transition Metal Sites , 2008 .

[65]  E. Ganz,et al.  Computational study of hydrogen binding by metal-organic framework-5. , 2004, The Journal of chemical physics.

[66]  Chongli Zhong,et al.  Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. , 2005, The journal of physical chemistry. B.

[67]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[68]  Modeling the Hydrogen Storage Materials with Exposed M2+ Coordination Sites , 2008 .

[69]  Randall Q. Snurr,et al.  Optimal isosteric heat of adsorption for hydrogen storage and delivery using metal-organic frameworks , 2010 .

[70]  P. Nachtigall,et al.  Investigation of the benzene-dimer potential energy surface: DFT/CCSD(T) correction scheme. , 2008, The Journal of chemical physics.

[71]  Norman L. Allinger,et al.  Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms , 1977 .

[72]  Zhongfang Chen,et al.  Ca-coated boron fullerenes and nanotubes as superior hydrogen storage materials. , 2009, Nano letters.

[73]  B. Yakobson,et al.  Clustering of Sc on SWNT and Reduction of Hydrogen Uptake: Ab-Initio All-Electron Calculations , 2007 .

[74]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[75]  Randall Q. Snurr,et al.  Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials , 2007 .

[76]  H Li,et al.  Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. , 2001, Accounts of chemical research.

[77]  R. J. Abraham,et al.  The morse curve as a non-bonded potential function , 1978 .

[78]  D. Truhlar,et al.  QM/MM: what have we learned, where are we, and where do we go from here? , 2007 .

[79]  D. Lévesque,et al.  Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes , 1998 .

[80]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[81]  P. Nachtigall,et al.  DFT/CC investigation of physical adsorption on a graphite (0001) surface. , 2010, Physical chemistry chemical physics : PCCP.

[82]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[83]  V. Buch,et al.  Path integral simulations of mixed para‐D2 and ortho‐D2 clusters: The orientational effects , 1994 .

[84]  Yoshiyuki Kawazoe,et al.  Clustering of Ti on a C60 surface and its effect on hydrogen storage. , 2005, Journal of the American Chemical Society.

[85]  David S. Sholl,et al.  Progress, Opportunities, and Challenges for Applying Atomically Detailed Modeling to Molecular Adsorption and Transport in Metal−Organic Framework Materials , 2009 .

[86]  Sang Soo Han,et al.  Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. , 2010, The journal of physical chemistry. A.

[87]  T. Hoang,et al.  Exploiting the Kubas Interaction in the Design of Hydrogen Storage Materials , 2009 .

[88]  Randall Q. Snurr,et al.  Prediction of adsorption of aromatic hydrocarbons in silicalite from grand canonical Monte Carlo simulations with biased insertions , 1993 .

[89]  Wenchuan Wang,et al.  Lithium-doped 3D covalent organic frameworks: high-capacity hydrogen storage materials. , 2009, Angewandte Chemie.

[90]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[91]  P. A. Monson,et al.  Monte Carlo Simulation Studies of Heats of Adsorption in Heterogeneous Solids , 1996 .

[92]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[93]  Jeong Yong Lee,et al.  3D metal-organic frameworks based on elongated tetracarboxylate building blocks for hydrogen storage. , 2008, Inorganic chemistry.

[94]  Yong-Hyun Kim,et al.  Effect of spin state on the dihydrogen binding strength to transition metal centers in metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[95]  T. Yildirim,et al.  Metal−Organic Frameworks Based on Double-Bond-Coupled Di-Isophthalate Linkers with High Hydrogen and Methane Uptakes , 2008 .

[96]  M. Yamashita,et al.  Framework engineering by anions and porous functionalities of Cu(II)/4,4'-bpy coordination polymers. , 2002, Journal of the American Chemical Society.

[97]  Alexandre Tkatchenko,et al.  Two- and three-body interatomic dispersion energy contributions to binding in molecules and solids. , 2010, The Journal of chemical physics.

[98]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[99]  Thea M. Wilson,et al.  Framework reduction and alkali-metal doping of a triply catenating metal-organic framework enhances and then diminishes H2 uptake. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[100]  Wenchuan Wang,et al.  High uptakes of methane in Li-doped 3D covalent organic frameworks. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[101]  E. Klontzas,et al.  Enhancement of hydrogen adsorption in metal-organic frameworks by the incorporation of the sulfonate group and Li cations. A multiscale computational study. , 2009, Journal of the American Chemical Society.

[102]  François-Xavier Coudert,et al.  Breathing transitions in MIL-53(Al) metal-organic framework upon xenon adsorption. , 2009, Angewandte Chemie.

[103]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[104]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[105]  Michael O'Keeffe,et al.  High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture , 2008, Science.

[106]  J. Johnson,et al.  Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure , 2007 .

[107]  D. Sholl,et al.  Osmotic ensemble methods for predicting adsorption-induced structural transitions in nanoporous materials using molecular simulations. , 2011, The Journal of chemical physics.

[108]  Weiqiao Deng,et al.  Lithium-doped conjugated microporous polymers for reversible hydrogen storage. , 2010, Angewandte Chemie.

[109]  Chongli Zhong,et al.  Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. , 2006, The journal of physical chemistry. B.

[110]  C. Wilmer,et al.  Towards rapid computational screening of metal-organic frameworks for carbon dioxide capture: Calculation of framework charges via charge equilibration , 2011 .

[111]  C. A. T. Seldam,et al.  Virial coefficients of hydrogen and deuterium at temperatures between −175°C and +150°C. Conclusions from the second virial coefficient with regards to the intermolecular potential , 1960 .

[112]  Leonard R. MacGillivray,et al.  Metal-organic frameworks : design and application , 2010 .

[113]  Hervé Jobic,et al.  Quantum effects on adsorption and diffusion of hydrogen and deuterium in microporous materials. , 2006, The journal of physical chemistry. B.

[114]  Timothy D. Burchell,et al.  Low Pressure Storage of Natural Gas for Vehicular Applications , 2000 .

[115]  A. Gavezzotti,et al.  Calculation of Intermolecular Interaction Energies by Direct Numerical Integration over Electron Densities. 2. An Improved Polarization Model and the Evaluation of Dispersion and Repulsion Energies , 2003 .

[116]  G. Froudakis Why Alkali-Metal-Doped Carbon Nanotubes Possess High Hydrogen Uptake , 2001 .

[117]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[118]  P. Nachtigall,et al.  Water Adsorption on Coordinatively Unsaturated Sites in CuBTC MOF , 2010 .

[119]  Saeed Amirjalayer,et al.  First-Principles-Derived Force Field for Copper Paddle-Wheel-Based Metal−Organic Frameworks , 2010 .

[120]  Alexander Hofmann,et al.  Ab initio study of hydrogen adsorption in MOF-5. , 2009, Journal of the American Chemical Society.

[121]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[122]  M. Fröba,et al.  New microporous materials for acetylene storage and C(2)H(2)/CO(2) separation: insights from molecular simulations. , 2010, Chemphyschem : a European journal of chemical physics and physical chemistry.

[123]  Alexis T. Bell,et al.  Prediction of low occupancy sorption of alkanes in silicalite , 1990 .

[124]  H. Mizuseki,et al.  Probing the Structure, Stability and Hydrogen Adsorption of Lithium Functionalized Isoreticular MOF-5 (Fe, Cu, Co, Ni and Zn) by Density Functional Theory , 2009, International journal of molecular sciences.

[125]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[126]  K. Gubbins,et al.  Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand. , 2009, The Journal of chemical physics.

[127]  T. Yildirim,et al.  Hydrogen and Methane Adsorption in Metal−Organic Frameworks: A High-Pressure Volumetric Study , 2007 .

[128]  Joachim Sauer,et al.  A hybrid MP2/planewave-DFT scheme for large chemical systems: proton jumps in zeolites , 2004 .

[129]  Lev Sarkisov,et al.  Design of new materials for methane storage. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[130]  C. D. Collier,et al.  Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. , 2008, Journal of the American Chemical Society.

[131]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[132]  A. Ghoufi,et al.  Molecular dynamics simulations of breathing MOFs: structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption. , 2008, Angewandte Chemie.

[133]  Krista S. Walton,et al.  Effect of open metal sites on adsorption of polar and nonpolar molecules in metal-organic framework Cu-BTC. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[134]  Donald G. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals , 2008 .

[135]  George E. Froudakis,et al.  Why Li Doping in MOFs Enhances H2 Storage Capacity? A Multi-scale Theoretical Study , 2008 .

[136]  Marco Gallo,et al.  Fuel Gas Storage and Separations by Metal−Organic Frameworks: Simulated Adsorption Isotherms for H2 and CH4 and Their Equimolar Mixture , 2009 .

[137]  S. Xiang,et al.  A new MOF-505 analog exhibiting high acetylene storage. , 2009, Chemical communications.

[138]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[139]  Sankar Nair,et al.  Efficient calculation of diffusion limitations in metal organic framework materials: a tool for identifying materials for kinetic separations. , 2010, Journal of the American Chemical Society.

[140]  Qinyu Wang,et al.  Path integral grand canonical Monte Carlo , 1997 .

[141]  Chongli Zhong,et al.  Electrostatic-field-induced enhancement of gas mixture separation in metal-organic frameworks: a computational study. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[142]  L. Broadbelt,et al.  Is catenation beneficial for hydrogen storage in metal-organic frameworks? , 2008, Chemical communications.

[143]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[144]  M. J. Jordan,et al.  Modelling the interaction of molecular hydrogen with lithium-doped hydrogen storage materials , 2008 .

[145]  R. Snurr,et al.  Assessment of Isoreticular Metal−Organic Frameworks for Adsorption Separations: A Molecular Simulation Study of Methane/n-Butane Mixtures , 2004 .

[146]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[147]  M. P. Freeman THE QUANTUM MECHANICAL CORRECTION FOR THE HIGH TEMPERATURE VAN DER WAALS INTERACTION OF LIGHT GASES AND SURFACES. A NEW METHOD OF DETERMINING SURFACE AREA , 1960 .

[148]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[149]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[150]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[151]  Mitsuru Kondo,et al.  A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n] , 2000 .

[152]  R. Krishna,et al.  A molecular dynamics investigation of the diffusion characteristics of cavity-type zeolites with 8-ring windows , 2011 .

[153]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[154]  Swapan K. Ghosh,et al.  Alkali-metal-induced enhancement of hydrogen adsorption in C60 fullerene: an ab Initio study. , 2008, Nano letters.

[155]  D. E. Williams,et al.  Nonbonded potentials for azahydrocarbons: the importance of the Coulombic interaction , 1984 .

[156]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[157]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[158]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[159]  E. Klontzas,et al.  The effect of structural and energetic parameters of MOFs and COFs towards the improvement of their hydrogen storage properties , 2009, Nanotechnology.

[160]  Jie‐Peng Zhang,et al.  Optimized acetylene/carbon dioxide sorption in a dynamic porous crystal. , 2009, Journal of the American Chemical Society.

[161]  J. Hupp,et al.  Post-synthesis alkoxide formation within metal-organic framework materials: a strategy for incorporating highly coordinatively unsaturated metal ions. , 2009, Journal of the American Chemical Society.

[162]  T. Vlugt,et al.  Influence of Framework Flexibility on the Adsorption Properties of Hydrocarbons in the Zeolite Silicalite , 2002 .

[163]  Rajamani Krishna,et al.  Method for Analyzing Structural Changes of Flexible Metal-Organic Frameworks Induced by Adsorbates , 2009 .

[164]  Sanyue Wang,et al.  Comparative Molecular Simulation Study of Methane Adsorption in Metal−Organic Frameworks , 2007 .

[165]  Rustam Z. Khaliullin,et al.  Interaction of molecular hydrogen with open transition metal centers for enhanced binding in metal-organic frameworks: a computational study. , 2008, Inorganic chemistry.

[166]  Sang Soo Han,et al.  Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks. , 2009, Chemical Society reviews.

[167]  P. Morse Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels , 1929 .

[168]  Rachel B. Getman,et al.  Metal Alkoxide Functionalization in Metal—Organic Frameworks for Enhanced Ambient-Temperature Hydrogen Storage , 2011 .

[169]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[170]  Qian Wang,et al.  First-principles study of hydrogen storage on Li12C60. , 2006, Journal of the American Chemical Society.

[171]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[172]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[173]  A. Myers,et al.  Isosteric heats of multicomponent adsorption : thermodynamics and computer simulations , 1991 .

[174]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[175]  Krista S. Walton,et al.  Strategies for Characterization of Large-Pore Metal-Organic Frameworks by Combined Experimental and Computational Methods , 2009 .