Physics-Driven Inverse Problems Made Tractable With Cosparse Regularization

Sparse data models are powerful tools for solving ill-posed inverse problems. We present a regularization framework based on the sparse synthesis and sparse analysis models for problems governed by linear partial differential equations. Although nominally equivalent, we show that the two models differ substantially from a computational perspective: unlike the sparse synthesis model, its analysis counterpart has much better scaling capabilities and can indeed be faster when more measurement data is available. Our findings are illustrated on two examples, sound source localization and brain source localization, which also serve as showcases for the regularization framework. To address this type of inverse problems, we develop a specially tailored convex optimization algorithm based on the Alternating Direction Method of Multipliers.

[1]  Laurent Daudet,et al.  Source localization in reverberant rooms using sparse modeling and narrowband measurements , 2013, ArXiv.

[2]  Volkan Cevher,et al.  Structured Sparsity Models for Reverberant Speech Separation , 2014, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[3]  Rémi Gribonval,et al.  Brain source localization using a physics-driven structured cosparse representation of EEG signals , 2014, 2014 IEEE International Workshop on Machine Learning for Signal Processing (MLSP).

[4]  Jessika Eichel,et al.  Partial Differential Equations Second Edition , 2016 .

[5]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[6]  A. Kirsch An Introduction to the Mathematical Theory of Inverse Problems , 1996, Applied Mathematical Sciences.

[7]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[8]  Rémi Gribonval,et al.  Sparse Acoustic Source Localization with Blind Calibration for Unknown Medium Characteristics , 2014 .

[9]  B. Cornuelle,et al.  Ocean acoustic tomography , 1988, Signal Recovery and Synthesis.

[10]  Mathias Fink,et al.  Time-reversal acoustics in complex environments , 2006 .

[11]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[12]  B. Vanrumste,et al.  Comparing iterative solvers for linear systems associated with the finite difference discretisation of the forward problem in electro-encephalographic source analysis , 2006, Medical and Biological Engineering and Computing.

[13]  Francis R. Bach,et al.  Structured Variable Selection with Sparsity-Inducing Norms , 2009, J. Mach. Learn. Res..

[14]  Yu Hen Hu,et al.  Maximum likelihood multiple-source localization using acoustic energy measurements with wireless sensor networks , 2005, IEEE Transactions on Signal Processing.

[15]  Ulrike Goldschmidt Speech And Audio Processing In Adverse Environments , 2016 .

[16]  Holger Rauhut,et al.  A Mathematical Introduction to Compressive Sensing , 2013, Applied and Numerical Harmonic Analysis.

[17]  Masataka Goto,et al.  Real-time sound source localization and separation system and its application to automatic speech recognition , 2001, INTERSPEECH.

[18]  Gerhard Schmidt,et al.  Speech and Audio Processing in Adverse Environments , 2008 .

[19]  Kung Yao,et al.  Source localization and beamforming , 2002, IEEE Signal Process. Mag..

[20]  Volkan Cevher,et al.  Time-Data Tradeoffs by Aggressive Smoothing , 2014, NIPS.

[21]  Laurent Condat,et al.  A Primal–Dual Splitting Method for Convex Optimization Involving Lipschitzian, Proximable and Linear Composite Terms , 2012, Journal of Optimization Theory and Applications.

[22]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[23]  Rémi Gribonval,et al.  Physics-driven structured cosparse modeling for source localization , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[24]  Nathan Srebro,et al.  SVM optimization: inverse dependence on training set size , 2008, ICML '08.

[25]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[26]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[27]  Martin Vetterli,et al.  Room helps: Acoustic localization with finite elements , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[28]  Volkan Cevher,et al.  Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings , 2012, ArXiv.

[29]  Michael A. Saunders,et al.  LSMR: An Iterative Algorithm for Sparse Least-Squares Problems , 2010, SIAM J. Sci. Comput..

[30]  Faming Liang,et al.  Statistical and Computational Inverse Problems , 2006, Technometrics.

[31]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[32]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[33]  M. Yannakakis Computing the Minimum Fill-in is NP^Complete , 1981 .

[34]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations, Second Edition , 2004 .

[35]  Ralph D. Buehrle,et al.  Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies , 2006 .

[36]  P. L. Combettes,et al.  Primal-Dual Splitting Algorithm for Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone Operators , 2011, Set-Valued and Variational Analysis.

[37]  Julius O. Smith,et al.  Introduction to Digital Filters: with Audio Applications , 2007 .

[38]  Marc Moonen,et al.  Source localization and signal reconstruction in a reverberant field using the FDTD method , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[39]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[40]  Thomas Strohmer,et al.  Compressed Remote Sensing of Sparse Objects , 2009, SIAM J. Imaging Sci..

[41]  Marc Pollefeys,et al.  Direct computation of sound and microphone locations from time-difference-of-arrival data , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[42]  Jie Huang,et al.  A model-based sound localization system and its application to robot navigation , 1999, Robotics Auton. Syst..

[43]  E. Somersalo,et al.  Visualization of Magnetoencephalographic Data Using Minimum Current Estimates , 1999, NeuroImage.

[44]  Nancy Bertin,et al.  A review of cosparse signal recovery methods applied to sound source localization , 2013 .

[45]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[46]  Isao Yamada,et al.  Reduced-rank neural activity index for EEG/MEG multi-source localization , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[47]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[48]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[49]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[50]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[51]  G. Farhat,et al.  Diagnostic ultrasound Imaging : Inside out , 2004 .

[52]  Laurent Albera,et al.  Brain Source Localization Using a Fourth-Order Deflation Scheme , 2008, IEEE Transactions on Biomedical Engineering.

[53]  Rémi Gribonval,et al.  Hearing behind walls: Localizing sources in the room next door with cosparsity , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[54]  Ben H. Jansen,et al.  Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns , 1995, Biological Cybernetics.

[55]  Maarten van Walstijn,et al.  Formulation of Locally Reacting Surfaces in FDTD/K-DWM Modelling of Acoustic Spaces , 2008 .

[56]  F. Schmitt,et al.  Linear inverse problems in imaging , 2008, IEEE Signal Processing Magazine.

[57]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[58]  Margaret Cheney,et al.  Problems in synthetic-aperture radar imaging , 2009 .

[59]  D L Jewett,et al.  The effect of media inhomogeneities upon intracranial electrical fields. , 1972, IEEE transactions on bio-medical engineering.

[60]  Mário A. T. Figueiredo,et al.  Signal restoration with overcomplete wavelet transforms: comparison of analysis and synthesis priors , 2009, Optical Engineering + Applications.

[61]  Å. Björck Numerical Methods in Matrix Computations , 2014 .

[62]  Heinrich Kuttruff,et al.  Room acoustics , 1973 .

[63]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .