The important contribution of photo-generated charges to the silicon nanocrystals photo-charging/discharging-response time at room temperature in MOS-photodetectors

Abstract The results are reported of a detailed investigation into the photogenerated changes that occur in the capacitance–voltage (C–V) characteristics of Metal-Oxide-Semiconductor (MOS) photodetector, having a silicon nanocrystals (Si-ncs) embedded in SiOx=1.5 tunnel oxide layers. In order to study the influence of photon energy on charging/discharging photo-response of nanocrystal-based MOS structures, we have examined photo-capacitance-voltage (photo-CV) measurements at both light intensities 45 μW and 75 μW and wavelengths 436 nm and 595 nm. The photo-CV measurements indicate the important contribution of photo-generated charges to the charging/discharging mechanism. The (Si-ncs) charging/discharging photo-response time is evaluated to be 300 s at wavelength of 595 nm for 75 μW optical power at room temperature. This response time is influenced by the photogenerated-holes lifetime in the Si-ncs.

[1]  D. M. Kim,et al.  Photonic high-frequency capacitance-voltage characterization of interface states in metal-oxide-semiconductor capacitors , 2002 .

[2]  E. Yablonovitch,et al.  Single photoelectron trapping, storage, and detection in a field effect transistor , 2003 .

[3]  N. Sghaier,et al.  Analysis of photogenerated random telegraph signal in single electron detector (photo-SET). , 2010, Optics express.

[4]  G. Garcia‐Belmonte,et al.  Open-Circuit Voltage Limitation in Low-Bandgap Diketopyrrolopyrrole-Based Polymer Solar Cells Processed from Different Solvents , 2011 .

[5]  M. Weng,et al.  Study of the Interface Properties of TiO2/SiO2/SiC by Photocapacitance , 2011 .

[6]  M. Ikeda,et al.  Multiple-Step Electron Charging in Silicon-Quantum-Dot Floating Gate Metal-Oxide-Semiconductor Memories , 2003 .

[7]  V. Aimez,et al.  Traps contribution on detection time of single electron photodetector (Photo-SET) , 2014 .

[8]  D. Ritchie,et al.  Single Photon Detection with a Quantum Dot Transistor , 2001 .

[9]  Current fluctuation in single-hole transport through a two-dimensional Si multidot , 2005 .

[10]  H. Sirringhaus Reliability of Organic Field‐Effect Transistors , 2009 .

[11]  Nazarov,et al.  Photon-assisted tunneling through a quantum dot. , 1994, Physical review. B, Condensed matter.

[12]  K. Min,et al.  Deep-depletion high-frequency capacitance-voltage responses under photonic excitation and distribution of interface states in MOS capacitors , 2003 .

[13]  M. J. Kirton,et al.  Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/ƒ) noise , 1989 .

[14]  J. Gautier,et al.  Discharge mechanisms modeling in LPCVD silicon nanocrystals usingC–Vand capacitance transient techniques† , 2000 .

[15]  Cherie R. Kagan,et al.  Thin-Film Transistors , 2007 .

[16]  O. Okunev,et al.  Picosecond superconducting single-photon optical detector , 2001 .

[17]  Sung-Min Yoon,et al.  Transition of dominant instability mechanism depending on negative gate bias under illumination in amorphous In-Ga-Zn-O thin film transistor , 2011 .

[18]  J. Millán,et al.  High frequency CV measurements of SiC MOS capacitors , 1998 .

[19]  Sandip Tiwari,et al.  A silicon nanocrystals based memory , 1996 .

[20]  D. Gracias Nonlinear optical spectroscopy: On the tracks of carrier transport , 2007 .

[21]  Photon-assisted tunneling through a quantum dot , 1994 .

[22]  Shunri Oda,et al.  Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance–voltage and conductance–voltage measurements , 2003 .

[23]  Sensitivity Enhancement of Metal-Oxide-Semiconductor Tunneling Photodiode with Trapped Electrons in Ultra-Thin SiO2 Layer , 2014 .

[24]  H. Matsunami,et al.  Interface properties in metal-oxide-semiconductor structures on n-type 4H-SiC(033̄8) , 2002 .

[25]  D. Taylor,et al.  Photon-assisted capacitance–voltage study of organic metal–insulator–semiconductor capacitors , 2013 .

[26]  R. Howard,et al.  Discrete Resistance Switching in Submicrometer Silicon Inversion Layers: Individual Interface Traps and Low-Frequency ( 1 f ?) Noise , 1984 .