Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing.

CA1 pyramidal cells are the primary output neurons of the hippocampus, carrying information about the result of hippocampal network processing to the subiculum and entorhinal cortex (EC) and thence out to the rest of the brain. The primary excitatory drive to the CA1 pyramidal cells comes via the Schaffer collateral (SC) projection from area CA3. There is also a direct projection from EC to stratum lacunosum-moleculare (SLM) of CA1, an input well positioned to modulate information flow through the hippocampus. High-frequency stimulation in SLM evokes an inhibition sufficiently strong to prevent CA1 pyramidal cells from spiking in response to SC input, a phenomenon we refer to as spike-blocking. We characterized the spike-blocking efficacy of burst stimulation (10 stimuli at 100 Hz) in SLM and found that it is greatest at approximately 300-600 ms after the burst, consistent with the time course of the slow GABA(B) signaling pathway. Spike-blocking efficacy increases in potency with the number of SLM stimuli in a burst, but also decreases with repeated presentations of SLM bursts. Spike-blocking was eliminated in the presence of GABA(B) antagonists. We have identified a candidate population of interneurons in SLM and distal stratum radiatum (SR) that may mediate this spike-blocking effect. We conclude that the output of CA1 pyramidal cells, and hence the hippocampus, is modulated in an input pattern-dependent manner by activation of the direct pathway from EC.

[1]  P. Jonas,et al.  Patch-clamp recording in brain slices with improved slicer technology , 2001, Pflügers Archiv.

[2]  W. Levy,et al.  Perforant path activation modulates the induction of long-term potentiation of the schaffer collateral--hippocampal CA1 response: theoretical and experimental analyses. , 1998, Learning & memory.

[3]  M. Yeckel,et al.  Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[4]  R. Llinás,et al.  Intracellular study of direct entorhinal inputs to field CA1 in the isolated guinea pig brain in vitro , 1995, Hippocampus.

[5]  Y. Ben‐Ari,et al.  Direct demonstration of functional disconnection by anoxia of inhibitory interneurons from excitatory inputs in rat hippocampus. , 1995, Journal of neurophysiology.

[6]  W. A. Wilson,et al.  Temporally distinct mechanisms of use-dependent depression at inhibitory synapses in the rat hippocampus in vitro. , 1994, Journal of neurophysiology.

[7]  L. Squire,et al.  The medial temporal lobe memory system , 1991, Science.

[8]  T. Dugladze,et al.  Morphological and electrophysiological characterization of layer III cells of the medial entorhinal cortex of the rat , 1997, Neuroscience.

[9]  Y. Ben-Ari,et al.  Hippocampal seizures and failure of inhibition , 1979 .

[10]  H. Eichenbaum,et al.  The hippocampus--what does it do? , 1992, Behavioral and neural biology.

[11]  D. Prince,et al.  Frequency‐dependent depression of inhibition in guinea‐pig neocortex in vitro by GABAB receptor feed‐back on GABA release. , 1989, The Journal of physiology.

[12]  M. Hasselmo,et al.  Encoding and retrieval of episodic memories: Role of cholinergic and GABAergic modulation in the hippocampus , 1998, Hippocampus.

[13]  U. Heinemann,et al.  The perforant path projection to hippocampal area CA1 in the rat hippocampal‐entorhinal cortex combined slice. , 1995, The Journal of physiology.

[14]  A. Pitkänen,et al.  Projections from the lateral, basal, and accessory basal nuclei of the amygdala to the hippocampal formation in rat , 1999, The Journal of comparative neurology.

[15]  F. H. Lopes da Silva,et al.  Anatomic organization and physiology of the limbic cortex. , 1990, Physiological reviews.

[16]  D. Amaral,et al.  The three-dimensional organization of the hippocampal formation: A review of anatomical data , 1989, Neuroscience.

[17]  A. Alonso,et al.  Electroresponsiveness of medial entorhinal cortex layer III neurons in vitro , 1997, Neuroscience.

[18]  A. Roepstorff,et al.  Factors contributing to the decay of the stimulus-evoked IPSC in rat hippocampal CA1 neurons. , 1994, Journal of neurophysiology.

[19]  James L. McClelland,et al.  Considerations arising from a complementary learning systems perspective on hippocampus and neocortex , 1996, Hippocampus.

[20]  R. Nicoll,et al.  Local and diffuse synaptic actions of GABA in the hippocampus , 1993, Neuron.

[21]  G. Buzsáki,et al.  Entorhinal cortical innervation of parvalbumin‐containing neurons (basket and chandelier cells) in the rat ammon's horn , 1998, Hippocampus.

[22]  B. Gähwiler,et al.  Activity-dependent disinhibition. I. Repetitive stimulation reduces IPSP driving force and conductance in the hippocampus in vitro. , 1989, Journal of neurophysiology.

[23]  U. Misgeld,et al.  A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system , 1995, Progress in Neurobiology.

[24]  M. Hasselmo,et al.  Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  J. Lacaille,et al.  Properties of unitary IPSCs in hippocampal pyramidal cells originating from different types of interneurons in young rats. , 1997, Journal of neurophysiology.

[26]  R. Muller,et al.  A Quarter of a Century of Place Cells , 1996, Neuron.

[27]  N. Tamamaki,et al.  Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats , 1995, The Journal of comparative neurology.

[28]  J. Lacaille,et al.  Membrane properties and synaptic responses of interneurons located near the stratum lacunosum-moleculare/radiatum border of area CA1 in whole-cell recordings from rat hippocampal slices. , 1994, Journal of neurophysiology.

[29]  D. Mott,et al.  The pharmacology and function of central GABAB receptors. , 1994, International review of neurobiology.

[30]  P. Somogyi,et al.  Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. , 1994, Journal of neurophysiology.

[31]  R. Empson,et al.  Perforant path connections to area CA1 are predominantly inhibitory in the rat hippocampal‐entorhinal cortex combined slice preparation , 1995, Hippocampus.

[32]  C. McBain,et al.  Activation of metabotropic glutamate receptors differentially affects two classes of hippocampal interneurons and potentiates excitatory synaptic transmission , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  M P Witter,et al.  Projections from the nucleus reuniens thalami to the entorhinal cortex, hippocampal field CA1, and the subiculum in the rat arise from different populations of neurons , 1996, The Journal of comparative neurology.

[34]  G Buzsáki,et al.  Possible physiological role of the perforant path‐CA1 projection , 1995, Hippocampus.

[35]  J. Lacaille,et al.  Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[36]  S N Davies,et al.  Paired‐pulse depression of monosynaptic GABA‐mediated inhibitory postsynaptic responses in rat hippocampus. , 1990, The Journal of physiology.

[37]  T. van Groen,et al.  Extrinsic projections from area CA1 of the rat hippocampus: Olfactory, cortical, subcortical, and bilateral hippocampal formation projections , 1990, The Journal of comparative neurology.

[38]  Zhongsheng Han Morphological heterogeneity of non-pyramidal neurons in the CA1 region of the rat hippocampus , 1996, Neuroscience Research.

[39]  R. Muller,et al.  The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  J J Pysh,et al.  Time course and frequency dependence of synaptic vesicle depletion and recovery in electrically stimulated sympathetic ganglia , 1987, Journal of neurocytology.

[41]  Masao Yukie,et al.  Direct projections from the ventral TE area of the inferotemporal cortex to hippocampal field CA1 in the monkey , 1988, Neuroscience Letters.

[42]  D. Debanne,et al.  Functional Characterization and Modulation of Feedback Inhibitory Circuits in Area CA3 of Rat Hippocampal Slice Cultures , 1996, The European journal of neuroscience.

[43]  S. Mizumori,et al.  Medial septal modulation of entorhinal single unit activity in anesthetized and freely moving rats , 1992, Brain Research.

[44]  L. Squire,et al.  The primate hippocampal formation: evidence for a time-limited role in memory storage. , 1990, Science.

[45]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.

[46]  T. Babb,et al.  Neurophysiology of limbic system pathways in the rat: Projections from the subicular complex and hippocampus to the entorhinal cortex , 1986, Brain Research.

[47]  G. Buzsáki,et al.  Hippocampal CA1 interneurons: an in vivo intracellular labeling study , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[49]  E. Schuman,et al.  Long-term depression of temporoammonic-CA1 hippocampal synaptic transmission. , 1999, Journal of neurophysiology.

[50]  P. Somogyi,et al.  Unitary IPSPs evoked by interneurons at the stratum radiatum‐stratum lacunosum‐moleculare border in the CA1 area of the rat hippocampus in vitro , 1998, The Journal of physiology.

[51]  J. Lacaille,et al.  Stratum lacunosum-moleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[52]  B. Alger,et al.  Use-dependent depression of IPSPs in rat hippocampal pyramidal cells in vitro. , 1985, Journal of neurophysiology.

[53]  M. Witter Organization of the entorhinal—hippocampal system: A review of current anatomical data , 1993, Hippocampus.

[54]  R. Tsien,et al.  Properties of synaptic transmission at single hippocampal synaptic boutons , 1995, Nature.

[55]  F. H. Lopes da Silva,et al.  Nucleus Reuniens Thalami Modulates Activity in Hippocampal Field CA1 through Excitatory and Inhibitory Mechanisms , 1997, The Journal of Neuroscience.

[56]  J. E. Vaughn,et al.  An immunocytochemical study of choline acetyltransferase- containing neurons and axon terminals in normal and partially deafferented hippocampal formation , 1987, Brain Research.

[57]  C. Stevens,et al.  Estimates for the pool size of releasable quanta at a single central synapse and for the time required to refill the pool. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[58]  J. Povlishock,et al.  The effects of traumatic brain injury on inhibition in the hippocampus and dentate gyrus , 1997, Brain Research.

[59]  B. Connors,et al.  Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor‐mediated responses in neocortex of rat and cat. , 1988, The Journal of physiology.

[60]  L. Benardo N-methyl-d-aspartate transmission modulates GABAB-mediated inhibition of rat hippocampal pyramidal neurons in vitro , 1995, Neuroscience.

[61]  J. Lerma,et al.  Characteristics of CA1 activation through the hippocampal trisynaptic pathway in the unanaesthetized rat , 1987, Brain Research.

[62]  C. McBain,et al.  Passive propagation of LTD to stratum oriens-alveus inhibitory neurons modulates the temporoammonic input to the hippocampal CA1 region , 1995, Neuron.

[63]  David Wood,et al.  Luddites must not block progress in genetics , 1999, Nature.

[64]  K. Stengaard-Pedersen,et al.  Localization of enkephalin and cholecystokinin immunoreactivities in the perforant path terminal fields of the rat hippocampal formation , 1984, Brain Research.

[65]  I. Soltesz,et al.  The direct perforant path input to CA1: Excitatory or inhibitory? , 1995, Hippocampus.

[66]  L. Benardo,et al.  Properties of isolated GABAB-mediated inhibitory postsynaptic currents in hippocampal pyramidal cells , 1994, Neuroscience.

[67]  W B Levy,et al.  Electrophysiological and pharmacological characterization of perforant path synapses in CA1: mediation by glutamate receptors. , 1992, Journal of neurophysiology.

[68]  D. Amaral,et al.  Neurons, numbers and the hippocampal network. , 1990, Progress in brain research.

[69]  M. Witter,et al.  Functional organization of the extrinsic and intrinsic circuitry of the parahippocampal region , 1989, Progress in Neurobiology.

[70]  D. D. Fraser,et al.  Low-threshold transient calcium current in rat hippocampal lacunosum- moleculare interneurons: kinetics and modulation by neurotransmitters , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  M. Witter,et al.  Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin , 1990, The Journal of comparative neurology.

[72]  G. Buzsáki,et al.  Interneurons of the hippocampus , 1998, Hippocampus.

[73]  O. Steward,et al.  Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat , 1976, The Journal of comparative neurology.

[74]  J. Lacaille,et al.  GABAB receptor‐mediated inhibitory postsynaptic potentials evoked by electrical stimulation and by glutamate stimulation of interneurons in Stratum lacunosum‐moleculare in hippocampal CA1 pyramidal cells in vitro , 1992, Synapse.

[75]  P. Andersen,et al.  Excitatory synapses on hippocampal apical dendrites activated by entorhinal stimulation. , 1966, Acta physiologica Scandinavica.

[76]  G. Buzsáki,et al.  Gamma Oscillations in the Entorhinal Cortex of the Freely Behaving Rat , 1998, The Journal of Neuroscience.

[77]  T. Freund,et al.  Differences between Somatic and Dendritic Inhibition in the Hippocampus , 1996, Neuron.