Rational BRDF

Over the last two decades, much effort has been devoted to accurately measuring Bidirectional Reflectance Distribution Functions (BRDFs) of real-world materials and to use efficiently the resulting data for rendering. Because of their large size, it is difficult to use directly measured BRDFs for real-time applications, and fitting the most sophisticated analytical BRDF models is still a complex task. In this paper, we introduce Rational BRDF, a general-purpose and efficient representation for arbitrary BRDFs, based on Rational Functions (RFs). Using an adapted parametrization, we demonstrate how Rational BRDFs offer 1) a more compact and efficient representation using low-degree RFs, 2) an accurate fitting of measured materials with guaranteed control of the residual error, and 3) efficient importance sampling by applying the same fitting process to determine the inverse of the Cumulative Distribution Function (CDF) generated from the BRDF for use in Monte-Carlo rendering.

[1]  Todd E. Zickler,et al.  Passive Reflectometry , 2008, ECCV.

[2]  Ravi Ramamoorthi,et al.  An Analysis of the In‐Out BRDF Factorization for View‐Dependent Relighting , 2008, Comput. Graph. Forum.

[3]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[4]  Miguel Lastra,et al.  Generic BRDF Sampling - A Sampling Method for Global Illumination , 2008, GRAPP.

[5]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[6]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[7]  Philippe Bekaert,et al.  Advanced Global Illumination, Second Edition , 2006 .

[8]  James Arvo,et al.  Barycentric parameterizations for isotropic BRDFs , 2005, IEEE Transactions on Visualization and Computer Graphics.

[9]  Peter Shirley,et al.  The halfway vector disk for BRDF modeling , 2006, TOGS.

[10]  James T. Kajiya,et al.  The rendering equation , 1986, SIGGRAPH.

[11]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[12]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[13]  Jason Lawrence,et al.  Eurographics Symposium on Rendering (2007) Efficient Basis Decomposition for Scattered Reflectance Data , 2022 .

[14]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[15]  Baining Guo,et al.  All-frequency rendering of dynamic, spatially-varying reflectance , 2009, ACM Trans. Graph..

[16]  Carlos Ureña,et al.  An Importance Sampling Method for Arbitrary BRDFs , 2008, VISIGRAPP.

[17]  Annie Cuyt Recent applications of rational approximation theory: a guided tour , 2003 .

[18]  Christophe Schlick,et al.  An Inexpensive BRDF Model for Physically‐based Rendering , 1994, Comput. Graph. Forum.

[19]  Szymon Rusinkiewicz,et al.  Efficient BRDF importance sampling using a factored representation , 2004, SIGGRAPH 2004.

[20]  Annie A. M. Cuyt,et al.  Rational approximation of vertical segments , 2007, Numerical Algorithms.

[21]  Philippe Bekaert,et al.  Advanced global illumination , 2006 .

[22]  László Szirmay-Kalos,et al.  An anisotropic BRDF model for fitting and Monte Carlo rendering , 2010, COMG.

[23]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[24]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[25]  Ravi Ramamoorthi,et al.  Real-time BRDF editing in complex lighting , 2006, ACM Trans. Graph..

[26]  John M. Snyder,et al.  Modeling anisotropic surface reflectance with example-based microfacet synthesis , 2008, SIGGRAPH 2008.

[27]  Donald P. Greenberg,et al.  A comprehensive physical model for light reflection , 1991, SIGGRAPH.

[28]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[29]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[30]  Ravi Ramamoorthi,et al.  Reflectance sharing: image-based rendering from a sparse set of images , 2005, EGSR '05.

[31]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[32]  Nelson L. Max,et al.  Bidirectional reflection functions from surface bump maps , 1987, SIGGRAPH.

[33]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[34]  M. Ashikhmin,et al.  Distribution-based BRDFs , 2007 .

[35]  Jos Stam,et al.  Diffraction shaders , 1999, SIGGRAPH.

[36]  Henrik Wann Jensen,et al.  Importance Sampling Spherical Harmonics , 2009, Comput. Graph. Forum.

[37]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[38]  Didier Arquès,et al.  A Physically-Based BRDF Model for Multilayer Systems with Uncorrelated Rough Boundaries , 2000, Rendering Techniques.