Design, Fabrication, and Modulation of THz Bandpass Metamaterials

Development of terahertz (THz) sources, detectors, and optical components has been an active area of research across the globe. The interest in THz optoelectronics is driven by the various applications they have enabled, such as ultrawide‐band communication systems, air‐ and space‐borne astronomy, atmospheric monitoring, small‐scale radar, airport security scanners, ultrafast nanodevices, and biomedical imaging and sensing. Here, the aim is to provide a comprehensive review of THz bandpass metamaterials focusing on several areas. First, the design fundamentals and geometrical patterns of THz bandpass metamaterials are summarized. Second, fabrication methods of THz bandpass metamaterials are reviewed, including typical micro‐ and nanofabrication techniques and laser micromachining techniques. More importantly, different engineering methods are reviewed for tuning and modulation of the THz transmission resonance for these metamaterials. Both passive and active modulation methods are included in this discussion; the passive method involves changes in the geometrical pattern of the filter material, and the active method performs in situ modulation of properties by applying an external physical field. Finally, the potential applications and prospects for future research of THz bandpass metamaterials are discussed.

[1]  S. Zhuang,et al.  Ultrathin and broadband highly efficient terahertz reflective polarization converter based on four L-shaped metamaterials , 2019, Optical Materials.

[2]  L. Deng,et al.  Perfect terahertz-wave polarization rotator using dual Fabry–Perot-like cavity resonance metamaterial , 2019, Applied Physics A.

[3]  M. Beruete,et al.  Terahertz Sensing Based on Metasurfaces , 2019, Advanced Optical Materials.

[4]  M. Seo,et al.  Terahertz Biochemical Molecule‐Specific Sensors , 2019, Advanced Optical Materials.

[5]  Xinlong Xu,et al.  Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4–VO2–Si3N4 sandwich , 2019, Chinese Physics B.

[6]  Hongtao Ding,et al.  High Throughput Laser Process of Transparent Conducting Surfaces for Terahertz Bandpass Ultrathin Metamaterials , 2019, Scientific Reports.

[7]  N. Wang,et al.  Electrically Programmable Terahertz Diatomic Metamolecules for Chiral Optical Control , 2019, Research.

[8]  Lijuan Xie,et al.  Biological applications of terahertz technology based on nanomaterials and nanostructures. , 2019, Nanoscale.

[9]  F. Hu,et al.  Multi-band tunable terahertz bandpass filter based on vanadium dioxide hybrid metamaterial , 2019, Materials Research Express.

[10]  F. Toor,et al.  Contactless Optical Characterization of Carrier Dynamics in Free-Standing InAs-InAlAs Core-Shell Nanowires on Silicon. , 2019, Nano letters.

[11]  Feng Liu,et al.  Flexible properties of THz graphene bowtie metamaterials structures , 2018, Optical Materials Express.

[12]  S. Qu,et al.  A thermally tunable THz metamaterial frequency-selective surface based on barium strontium titanate thin film , 2018, Journal of Physics D: Applied Physics.

[13]  T. Venkatesan,et al.  Chalcogenide Phase Change Material for Active Terahertz Photonics , 2018, Advanced materials.

[14]  Jianjun Liu,et al.  Mechanically tunable dual frequency THz metamaterial filter , 2018, Optics Communications.

[15]  G. Wiederrecht,et al.  Broadband Metamaterial Absorbers , 2018, Advanced Optical Materials.

[16]  Chengkuo Lee,et al.  Reconfigurable MEMS Fano metasurfaces with multiple-input–output states for logic operations at terahertz frequencies , 2018, Nature Communications.

[17]  Lijuan Xie,et al.  Metallic mesh devices-based terahertz parallel-plate resonators: characteristics and applications. , 2018, Optics express.

[18]  V. Pruneri,et al.  Tunable plasmons in ultrathin metal films , 2018, Nature Photonics.

[19]  N. C. Shirazi,et al.  High Efficiency Tunable Graphene-Based Plasmonic Filter in the THz Frequency Range , 2018, Plasmonics.

[20]  ChengKwang-Ting,et al.  Flexible Electronics , 2018 .

[21]  A. Kashani,et al.  Additive manufacturing (3D printing): A review of materials, methods, applications and challenges , 2018, Composites Part B: Engineering.

[22]  Zhanhu Guo,et al.  An overview of metamaterials and their achievements in wireless power transfer , 2018 .

[23]  Q. Liu,et al.  Broadband tunable terahertz absorber based on vanadium dioxide metamaterials. , 2018, Optics express.

[24]  A. Lakhtakia,et al.  Characteristic Attributes of Multiple Cascaded Terahertz Metasurfaces with Magnetically Tunable Subwavelength Resonators , 2018 .

[25]  Rongkuo Zhao,et al.  Electrically tunable slow light using graphene metamaterials , 2018 .

[26]  C. Soukoulis,et al.  Photoexcited Graphene Metasurfaces: Significantly Enhanced and Tunable Magnetic Resonances , 2018 .

[27]  Houtong Chen,et al.  Invited Article: Narrowband terahertz bandpass filters employing stacked bilayer metasurface antireflection structures , 2018 .

[28]  Hongwei Liu,et al.  Metamaterials based on the phase transition of VO2 , 2018, Nanotechnology.

[29]  Xin-Ke Wang,et al.  High-efficiency terahertz devices based on cross-polarization converter , 2017, Scientific Reports.

[30]  Phaedon Avouris,et al.  Tunable Graphene Metasurface Reflectarray for Cloaking, Illusion and Focusing , 2017, 1712.04111.

[31]  Jian-Xin Zhu,et al.  Topological-insulator-based terahertz modulator , 2017, Scientific Reports.

[32]  Shuncong Zhong,et al.  Free-standing double-layer terahertz band-pass filters fabricated by femtosecond laser micro-machining. , 2017, Optics express.

[33]  Lijuan Xie,et al.  Mechanisms and applications of terahertz metamaterial sensing: a review. , 2017, Nanoscale.

[34]  B. Jin,et al.  Electrical dynamic modulation of THz radiation based on superconducting metamaterials , 2017 .

[35]  Dainan Zhang,et al.  Infrared Properties and Terahertz Wave Modulation of Graphene/MnZn Ferrite/p-Si Heterojunctions , 2017, Nanoscale Research Letters.

[36]  B. Pal,et al.  Role of Resonance Modes on Terahertz Metamaterials based Thin Film Sensors , 2017, Scientific Reports.

[37]  Ankur Solanki,et al.  Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices , 2017, Advanced materials.

[38]  A. Grebenchukov,et al.  Optically controlled terahertz filter based on graphene and cross-like metasurface , 2017 .

[39]  K. Konishi,et al.  Thick THz metamaterials fabricated by 3D printer for THz high-pass filter application , 2017, 2017 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC).

[40]  Chen Xu,et al.  Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials , 2017, 1705.09082.

[41]  Ankur Solanki,et al.  Perovskite as a Platform for Active Flexible Metaphotonic Devices , 2017 .

[42]  Chengkuo Lee,et al.  Active Phase Transition via Loss Engineering in a Terahertz MEMS Metamaterial , 2017, Advanced materials.

[43]  Khalid Alharbi,et al.  Diced and grounded broadband bow-tie antenna with tuning stub for resonant tunnelling diode terahertz oscillators , 2017 .

[44]  Andrea Alù,et al.  Invisibility exposed: physical bounds on passive cloaking , 2016 .

[45]  B. Jin,et al.  Electrically tunable superconducting terahertz metamaterial with low insertion loss and high switchable ratios , 2016 .

[46]  Xiaoguang Zhao,et al.  Voltage-tunable dual-layer terahertz metamaterials , 2016, Microsystems & Nanoengineering.

[47]  T. Fukuchi,et al.  Improvement of Measurement Resolution of Depth Distribution in Cross-Sectional Imaging Using Terahertz Wave , 2016 .

[48]  Houtong Chen,et al.  A review of metasurfaces: physics and applications , 2016, Reports on progress in physics. Physical Society.

[49]  Chengkuo Lee,et al.  A multiband flexible terahertz metamaterial with curvature sensing functionality , 2016 .

[50]  Ranjan Singh,et al.  Lattice-induced transparency in planar metamaterials , 2016, 1605.03277.

[51]  Hai Lu,et al.  Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays , 2016, Scientific Reports.

[52]  Q. M. Ngo,et al.  Cavity induced perfect absorption in metamaterials , 2016 .

[53]  Qiang Cheng,et al.  Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves , 2016, Light: Science & Applications.

[54]  D. Powell,et al.  Electroactive Tuning of Double‐Layered Metamaterials Based on π‐Conjugated Polymer Actuators , 2016 .

[55]  E. Sedykh,et al.  Tunable narrowband filters with cross-shaped resonators for THz frequency band , 2015 .

[56]  C. Xie,et al.  Voltage adjusting characteristics in terahertz transmission through Fabry-Pérot-based metamaterials , 2015 .

[57]  Mark A Arnold,et al.  Selectivity of Terahertz Gas-Phase Spectroscopy. , 2015, Analytical chemistry.

[58]  Yandong Gong,et al.  Switchable Ultrathin Quarter-wave Plate in Terahertz Using Active Phase-change Metasurface , 2015, Scientific Reports.

[59]  Tetsuo Kan,et al.  Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals , 2015, Nature Communications.

[60]  Weili Zhang,et al.  Polarization Control in Terahertz Metasurfaces with the Lowest Order Rotational Symmetry , 2015 .

[61]  Qiang Cheng,et al.  Broadband diffusion of terahertz waves by multi-bit coding metasurfaces , 2015, Light: Science & Applications.

[62]  C Affeldt,et al.  Alignment sensing and control for squeezed vacuum states of light. , 2015, Optics express.

[63]  Chulki Kim,et al.  Highly sensitive and selective sugar detection by terahertz nano-antennas , 2015, Scientific Reports.

[64]  Amanpreet Kaur,et al.  Affordable terahertz components using 3D printing , 2015, 2015 IEEE 65th Electronic Components and Technology Conference (ECTC).

[65]  Zhen Tian,et al.  Active graphene–silicon hybrid diode for terahertz waves , 2015, Nature Communications.

[66]  Michael A. Hoeh,et al.  Ultrathin flexible and optically tunable terahertz bandpass filter with embedded silicon , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[67]  D. R. Chowdhury,et al.  Flexible metasurfaces and metamaterials: A review of materials and fabrication processes at micro- and nano-scales , 2015 .

[68]  Yibin Ying,et al.  Extraordinary sensitivity enhancement by metasurfaces in terahertz detection of antibiotics , 2015, Scientific Reports.

[69]  C. La-o-vorakiat,et al.  Graphene Terahertz Modulators by Ionic Liquid Gating , 2015, Advanced materials.

[70]  Marco Rahm,et al.  Optical tuning of ultra-thin, silicon-based flexible metamaterial membranes in the terahertz regime , 2015 .

[71]  Jérôme Faist,et al.  Highly tunable hybrid metamaterials employing split-ring resonators strongly coupled to graphene surface plasmons , 2015, Nature Communications.

[72]  I. Al-Naib,et al.  Ultra-high Q even eigenmode resonance in terahertz metamaterials , 2015 .

[73]  Willie J Padilla,et al.  Post-processing approach for tuning multi-layered metamaterials , 2014 .

[74]  M Koch,et al.  Cost-efficient delay generator for fast terahertz imaging. , 2014, Optics letters.

[75]  L. Francioso,et al.  On the transmission of terahertz radiation through silicon-based structures , 2014 .

[76]  Wei Li,et al.  A thermally tunable terahertz bandpass filter with insulator-metal phase transition of VO2 thin film , 2014 .

[77]  Ziqiang Yang,et al.  Terahertz dual-resonance bandpass filter using bilayer reformative complementary metamaterial structures. , 2014, Optics letters.

[78]  A. Bernussi,et al.  Tunable dual-band terahertz metamaterial bandpass filters. , 2013, Optics letters.

[79]  Yun Xu,et al.  Highly tunable Terahertz filter with magneto-optical Bragg grating formed in semiconductor-insulator-semiconductor waveguides , 2013 .

[80]  Derek Abbott,et al.  Flexible terahertz metamaterials for dual-axis strain sensing. , 2013, Optics letters.

[81]  K. Erande,et al.  Terahertz technology and its applications , 2013 .

[82]  S. Ornes Metamaterials , 2013, Proceedings of the National Academy of Sciences.

[83]  I. Sohn,et al.  Folded slot resonator array with efficient terahertz transmission , 2013 .

[84]  A. Mitchell,et al.  Mechanically tunable terahertz metamaterials , 2013 .

[85]  Makoto Watanabe,et al.  Terahertz Transmission for Arrays of Apertures with Siemens-Star Geometry , 2013 .

[86]  Y. P. Lee,et al.  THz-metamaterial absorbers , 2013 .

[87]  M. Nordin,et al.  A compact wideband coplanar waveguide fed metamaterial-inspired patch antenna for wireless application , 2012 .

[88]  Khan Mamun Reza,et al.  Frequency Selective Surface Based Bandpass Filter for THz Communication System , 2012, Journal of Infrared, Millimeter, and Terahertz Waves.

[89]  K. Nelson,et al.  Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial , 2012, Nature.

[90]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[91]  Alexandre Monteiro da Silva,et al.  Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results , 2012 .

[92]  R. Morandotti,et al.  Membrane metamaterial resonators with a sharp resonance: A comprehensive study towards practical terahertz filters and sensors , 2012 .

[93]  Le Zhang,et al.  Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays. , 2012, Applied optics.

[94]  Q. Jia,et al.  Optical tuning and ultrafast dynamics of high-temperature superconducting terahertz metamaterials , 2011, 1111.3917.

[95]  Z. Jacob,et al.  Topological Transitions in Metamaterials , 2011, Science.

[96]  B. Voisiat,et al.  Band-pass filters for THz spectral range fabricated by laser ablation , 2011 .

[97]  T. V. Do,et al.  The electromagnetic response of different metamaterial structures , 2011 .

[98]  Mona Jarrahi,et al.  Design of reconfigurable metallic slits for terahertz beam modulation. , 2011, Optics express.

[99]  A. Noor Metamaterial Electromagnetic Absorbers and Plasmonic Structures , 2010 .

[100]  Weijia Wen,et al.  Resonant terahertz transmissions through metal hole array on silicon substrate. , 2010, Optics express.

[101]  Megan J. Cordill,et al.  Flexible film systems: Current understanding and future prospects , 2010 .

[102]  J. Federici,et al.  Review of terahertz and subterahertz wireless communications , 2010 .

[103]  Francisco Falcone,et al.  Development and Characterization of Quasi-Optical Mesh Filters and Metastructures for Subterahertz and Terahertz Applications , 2010 .

[104]  H. Bernien,et al.  Active terahertz nanoantennas based on VO2 phase transition. , 2010, Nano letters.

[105]  Q. Xing,et al.  Terahertz superconducting plasmonic hole array. , 2010, Optics letters.

[106]  Michael Banks Researchers warn of neglect to basic science , 2010 .

[107]  D. Cumming,et al.  THz band pass filter on plastic substrates and its application on biological sensing , 2010, 2010 IEEE Photonics Society Winter Topicals Meeting Series (WTM).

[108]  Weili Zhang,et al.  Cryogenic temperatures as a path toward high-Q terahertz metamaterials , 2010, 1001.3833.

[109]  Xiang Zhang,et al.  Introduction to THz Wave Photonics , 2009 .

[110]  Weili Zhang,et al.  Random terahertz metamaterials , 2009, 0909.3539.

[111]  J. Weiner,et al.  The physics of light transmission through subwavelength apertures and aperture arrays , 2009, 2009 Optical Data Storage Topical Meeting.

[112]  Willie J Padilla,et al.  A metamaterial solid-state terahertz phase modulator , 2009 .

[113]  L. Kuzmin,et al.  Fabrication and characteristics of mesh band-pass filters , 2009 .

[114]  Albrecht Poglitsch,et al.  Metal mesh resonant filters for terahertz frequencies. , 2008, Applied optics.

[115]  Guo Peng,et al.  Magnetically Tunable Terahertz Switch and Band-Pass Filter , 2008 .

[116]  Hong Lu,et al.  Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. , 2008, Optics express.

[117]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[118]  H.B. Wallace,et al.  Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region , 2007, IEEE Transactions on Antennas and Propagation.

[119]  Christian Debus,et al.  Frequency selective surfaces for high sensitivity terahertz sensing , 2007, 2104.05462.

[120]  Hua Zhong,et al.  Terahertz Spectroscopy and Imaging for Defense and Security Applications , 2007, Proceedings of the IEEE.

[121]  J. M. Chamberlain,et al.  Terahertz frequency bandpass filters. , 2007 .

[122]  Ajay Nahata,et al.  Transmission resonances through aperiodic arrays of subwavelength apertures , 2007, Nature.

[123]  Masayoshi Tonouchi,et al.  Cutting-edge terahertz technology , 2007 .

[124]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[125]  Masanori Hangyo,et al.  Effect of hole diameter on terahertz surface-wave excitation in metal-hole arrays , 2006 .

[126]  Weili Zhang,et al.  Effect of dielectric properties of metals on terahertz transmission subwavelength hole arrays. , 2006, Optics letters.

[127]  Xiang Zhang,et al.  THz wave standoff detection of explosive materials , 2006, SPIE Defense + Commercial Sensing.

[128]  S Hayashi,et al.  Terahertz surface-wave resonant sensor with a metal hole array. , 2006, Optics letters.

[129]  John E. Cunningham,et al.  Terahertz frequency range band-stop filters , 2005 .

[130]  Eiichi Sano,et al.  Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays. , 2005, Optics letters.

[131]  Masanori Hangyo,et al.  Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons , 2005 .

[132]  Abul K. Azad,et al.  Transmission properties of terahertz pulses through an ultrathin subwavelength silicon hole array , 2005 .

[133]  S. Ramakrishna,et al.  Physics of negative refractive index materials , 2005 .

[134]  Ajay Nahata,et al.  Influence of aperture shape on the transmission properties of a periodic array of subwavelength apertures. , 2004, Optics express.

[135]  Heinrich Kurz,et al.  Optimization of enhanced terahertz transmission through arrays of subwavelength apertures , 2004 .

[136]  Weili Zhang,et al.  Terahertz transmission properties of thin, subwavelength metallic hole arrays. , 2004, Optics letters.

[137]  Ajay Nahata,et al.  Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures. , 2004, Optics express.

[138]  H. Lezec,et al.  Effects of hole depth on enhanced light transmission through subwavelength hole arrays , 2002 .

[139]  Paul C. M. Planken,et al.  Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip , 2002 .

[140]  A. Bhalla,et al.  Dielectric behavior of paraelectric KTaO 3 , CaTiO 3 , and (Ln 1/2 Na 1/2 )TiO 3 under a dc electric field , 2001 .

[141]  Thomas W. Ebbesen,et al.  Crucial role of metal surface in enhanced transmission through subwavelength apertures , 2000 .

[142]  C. Winnewisser,et al.  Design, fabrication, and measurement of frequency-selective surfaces , 2000 .

[143]  Erich N. Grossman,et al.  Spectral transmittance of lossy printed resonant-grid terahertz bandpass filters , 2000 .

[144]  K. R. Farmer,et al.  Thin and thick cross shaped metal grids , 1999 .

[145]  Thomas W. Ebbesen,et al.  Surface-plasmon-enhanced transmission through hole arrays in Cr films , 1999 .

[146]  H. Lezec,et al.  Control of optical transmission through metals perforated with subwavelength hole arrays. , 1999, Optics letters.

[147]  C. Winnewisser,et al.  Transmission characteristics of dichroic filters measured by THz time-domain spectroscopy , 1998 .

[148]  J. Heaney,et al.  Cross-shaped bandpass filters for the near- and mid-infrared wavelength regions. , 1996, Applied optics.

[149]  M. Nuss,et al.  Imaging with terahertz waves. , 1995, Optics letters.

[150]  R. Weikle,et al.  Resonant metal-mesh bandpass filters for the far infrared. , 1994, Applied optics.

[151]  P. Richards,et al.  Far-infrared dichroic bandpass filters. , 1985, Applied optics.

[152]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[153]  N. Mott,et al.  Metal-insulator transition in vanadium dioxide , 1975 .

[154]  J. B. Gruber,et al.  Intrinsic Concentration and Heavy‐Hole Mass in InSb , 1970 .

[155]  N. Nozhat,et al.  Design, Theory, and Circuit Model of Wideband, Tunable and Polarization-Insensitive Terahertz Absorber Based on Graphene , 2019, IEEE Transactions on Nanotechnology.

[156]  Hee Jun Shin,et al.  Thermally controllable filter at terahertz region , 2018 .

[157]  Marina Schmid,et al.  Infrared And Millimeter Waves , 2016 .

[158]  Willie J. Padilla,et al.  Dynamic electromagnetic metamaterials , 2015 .

[159]  T. Fukuchi,et al.  Improvement of In-plane Spatial Resolution of Time Domain Terahertz Spectral Imaging by Application of Frequency Filter , 2013 .

[160]  V. Shalaev Optical negative-index metamaterials , 2007 .

[161]  M. Jimenez-Linan,et al.  Terahertz imaging of breast cancer, a feasibility study , 2004, Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004..

[162]  Electro-optics Conference on lasers and electro-optics (CLEO) , 2003 .

[163]  S. Sikdar,et al.  Fundamentals and applications , 1998 .