A Local Discontinuous Galerkin Method for Nonlinear Diffusion Problems with Mixed Boundary Conditions

In this paper we present and analyze a local discontinuous Galerkin method for a class of nonlinear diffusion problems in polygonal regions of $\R^2$. Our analysis follows known approaches previously applied to linear problems and considers convex and nonconvex domains. We provide solvability and stability of the discrete scheme for several polynomial approximations, and we derive a priori error estimates in the energy and L2 norms. Numerical experiments illustrating these results are also provided.

[1]  George Em Karniadakis,et al.  The Development of Discontinuous Galerkin Methods , 2000 .

[2]  Panayot S. Vassilevski,et al.  Interior penalty preconditioners for mixed finite element approximations of elliptic problems , 1996, Math. Comput..

[3]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[4]  N. Heuer,et al.  On the numerical analysis of nonlinear twofold saddle point problems , 2003 .

[5]  C. Schwab P- and hp- finite element methods : theory and applications in solid and fluid mechanics , 1998 .

[6]  PAUL CASTILLO,et al.  Performance of Discontinuous Galerkin Methods for Elliptic PDEs , 2002, SIAM J. Sci. Comput..

[7]  Ilaria Perugia,et al.  An A Priori Error Analysis of the Local Discontinuous Galerkin Method for Elliptic Problems , 2000, SIAM J. Numer. Anal..

[8]  Jindřich Nečas,et al.  Introduction to the Theory of Nonlinear Elliptic Equations , 1986 .

[9]  Ilaria Perugia,et al.  An hp-Analysis of the Local Discontinuous Galerkin Method for Diffusion Problems , 2002, J. Sci. Comput..

[10]  Clint Dawson,et al.  Some Extensions Of The Local Discontinuous Galerkin Method For Convection-Diffusion Equations In Mul , 1999 .

[11]  Ilaria Perugia,et al.  The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations , 2003, Math. Comput..

[12]  Existence et approximation de points selles pour certains problèmes non linéaires , 1977 .

[13]  Guido Kanschat,et al.  A multilevel discontinuous Galerkin method , 2003, Numerische Mathematik.

[14]  A. Ženíšek,et al.  Nonlinear elliptic and evolution problems and their finite element approximations , 1990 .

[15]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[16]  G. Gatica Solvability and Galerkin Approximations of a Class of Nonlinear Operator Equations , 2002 .

[17]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[18]  Gabriel R. Barrenechea,et al.  A primal mixed formulation for exterior transmission problems in ${\bf R}^2$ , 2001, Numerische Mathematik.

[19]  J. M. Thomas,et al.  Introduction à l'analyse numérique des équations aux dérivées partielles , 1983 .

[20]  Ilaria Perugia,et al.  On the Coupling of Local Discontinuous Galerkin and Conforming Finite Element Methods , 2001, J. Sci. Comput..

[21]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[22]  Francisco-Javier Sayas,et al.  A note on the local approximation properties of piecewise polynomials with applications to LDG methods , 2006 .

[23]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[24]  Salim Meddahi,et al.  A dual-dual mixed formulation for nonlinear exterior transmission problems , 2001, Math. Comput..

[25]  Norbert Heuer,et al.  An expanded mixed finite element approach via a dual-dual formulation and the minimum residual method , 2001 .

[26]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .