Quantifying redox-induced Schottky barrier variations in memristive devices via in operando spectromicroscopy with graphene electrodes

[1]  John Paul Strachan,et al.  Direct Observation of Localized Radial Oxygen Migration in Functioning Tantalum Oxide Memristors. , 2016, Advanced materials.

[2]  S. Menzel,et al.  Nanoionic Resistive Switching Memories: On the Physical Nature of the Dynamic Reset Process , 2016 .

[3]  R. Dittmann,et al.  Spectromicroscopic insights for rational design of redox-based memristive devices , 2015, Nature Communications.

[4]  S. Menzel,et al.  Physical simulation of dynamic resistive switching in metal oxides using a Schottky contact barrier model , 2015, International Conference on Simulation of Semiconductor Processes and Devices.

[5]  Catherine E. Graves,et al.  In-operando synchronous time-multiplexed O K-edge x-ray absorption spectromicroscopy of functioning tantalum oxide memristors , 2015, 1510.05066.

[6]  Michal Wojcik,et al.  Graphene-enabled electron microscopy and correlated super-resolution microscopy of wet cells , 2015, Nature Communications.

[7]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[8]  Hong-Yu Chen,et al.  Metal oxide-resistive memory using graphene-edge electrodes , 2015, Nature Communications.

[9]  W. Chueh,et al.  Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions , 2015, Nature Communications.

[10]  M. Kiskinova,et al.  Photoelectron spectroscopy of wet and gaseous samples through graphene membranes. , 2014, Nanoscale.

[11]  R. Dittmann,et al.  Insights into Nanoscale Electrochemical Reduction in a Memristive Oxide: the Role of Three‐Phase Boundaries , 2014 .

[12]  Myoung-Jae Lee,et al.  Anomalous effect due to oxygen vacancy accumulation below the electrode in bipolar resistance switching Pt/Nb:SrTiO3 cells , 2014 .

[13]  T. Schroeder,et al.  In-operando hard X-ray photoelectron spectroscopy study on the impact of current compliance and switching cycles on oxygen and carbon defects in resistive switching Ti/HfO2/TiN cells , 2014 .

[14]  Gerard Ghibaudo,et al.  A Combined Ab Initio and Experimental Study on the Nature of Conductive Filaments in ${\rm Pt}/{\rm Hf}{\rm O}_{2}/{\rm Pt}$ Resistive Random Access Memory , 2014, IEEE Transactions on Electron Devices.

[15]  S. Dou,et al.  Magnetic properties and magnetocaloric effect of NdMn2−xCuxSi2 compounds , 2014 .

[16]  M. Gorgoi,et al.  X-ray spectroscopic study of SrTiOx films with different interlayers , 2013 .

[17]  A Berghaus,et al.  A new aberration-corrected, energy-filtered LEEM/PEEM instrument II. Operation and results. , 2013, Ultramicroscopy.

[18]  M. Shim,et al.  Tunable carrier type and density in graphene/PbZr0.2Ti0.8O3 hybrid structures through ferroelectric switching. , 2013, Nano letters.

[19]  Shimeng Yu,et al.  Monitoring oxygen movement by Raman spectroscopy of resistive random access memory with a graphene-inserted electrode. , 2013, Nano letters.

[20]  J. Tour,et al.  Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene , 2012, Nature Communications.

[21]  S. Balatti,et al.  Resistive Switching by Voltage-Driven Ion Migration in Bipolar RRAM—Part II: Modeling , 2012, IEEE Transactions on Electron Devices.

[22]  T. Weirich,et al.  Behavior of oxygen vacancies in single-crystal SrTiO3: Equilibrium distribution and diffusion kinetics , 2012 .

[23]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[24]  Daesung Park,et al.  Scaling Potential of Local Redox Processes in Memristive SrTiO $_{3}$ Thin-Film Devices , 2012, Proceedings of the IEEE.

[25]  A. Locatelli,et al.  Image blur and energy broadening effects in XPEEM. , 2011, Ultramicroscopy.

[26]  Florian Kronast,et al.  Reversible resistive switching and multilevel recording in La0.7Sr0.3MnO3 thin films for low cost nonvolatile memories. , 2010, Nano letters.

[27]  J. Yang,et al.  Direct Identification of the Conducting Channels in a Functioning Memristive Device , 2010, Advanced materials.

[28]  A Berghaus,et al.  A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. , 2010, Ultramicroscopy.

[29]  Peter Abbamonte,et al.  Probing Interfacial Electronic Structures in Atomic Layer LaMnO3 and SrTiO3 Superlattices , 2010, Advanced materials.

[30]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[31]  B. Delley,et al.  Role of Oxygen Vacancies in Cr‐Doped SrTiO3 for Resistance‐Change Memory , 2007, 0707.0563.

[32]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[33]  G. Botton,et al.  High-resolution EELS study of the vacancy-doped metal/insulator system, Nd1-xTiO3, x = 0 to 0.33 , 2005 .

[34]  R. Moos,et al.  Defect Chemistry of Donor‐Doped and Undoped Strontium Titanate Ceramics between 1000° and 1400°C , 2005 .

[35]  Akira Ohtomo,et al.  Atomic-scale imaging of nanoengineered oxygen vacancy profiles in SrTiO3 , 2004, Nature.

[36]  D. Chidambarrao,et al.  Comparison of raised and Schottky source/drain MOSFETs using a novel tunneling contact model , 1998, International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217).

[37]  H. Kuwahara,et al.  Current switching of resistive states in magnetoresistive manganites , 1997, Nature.

[38]  de Groot FM,et al.  Oxygen 1s x-ray absorption of tetravalent titanium oxides: A comparison with single-particle calculations. , 1993, Physical review. B, Condensed matter.

[39]  Nakamura,et al.  Doping-induced changes in the electronic structure of LaxSr1-xTiO3: Limitation of the one-electron rigid-band model and the Hubbard model. , 1992, Physical review. B, Condensed matter.

[40]  Tsuda,et al.  Soft-x-ray-absorption studies of the location of extra charges induced by substitution in controlled-valence materials. , 1991, Physical review. B, Condensed matter.

[41]  G. Sawatzky,et al.  Oxygen 1s x-ray-absorption edges of transition-metal oxides. , 1989, Physical review. B, Condensed matter.

[42]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.